Getting Cancer Screening Programmes Back on Track with AI and Digitisation

Getting Cancer Screening Programmes Back on Track with AI and Digitisation
Download full infographic here.

Michael Quick, Vice President of Research & Development / Innovation at Hologic explains the crucial role the company sees artificial intelligence (AI) and digitisation playing in addressing the breast and cervical cancer screening backlogs across Europe.

COVID-19 has been a catalyst for change, with the diagnostics industry taking centre stage and rising to the challenge of a global pandemic. One of the silver linings has been an enormous amount of cross-border collaboration, with solidarity and a single, shared point of focus fuelling innovation.

All the lessons learned from the pandemic now need to be taken forward to improve breast and cervical cancer detection, prevention, and treatment across Europe over the coming years. In the more immediate term, the diagnostics industry, alongside public health leaders, faces a daunting backlog as screening programmes for breast and cervical cancer were put on pause for months. These two life-saving tests have been some of the most overlooked during the pandemic and getting back on track with screening is critical as we start to turn the corner. We believe innovation in diagnostics, particularly artificial intelligence guided imaging, is a key tool to tackle delays in breast and cervical cancer diagnosis.

The scale of the backlog in missed appointments is yet to be quantified fully across Europe, with estimates ranging across regions. In France, the number of breast cancer diagnoses fell 50% from March to May 2020,1 in the UK, an estimated 600,000 cervical screening appointments were missed in April and May 2020,2 and there are a hypothesised 5,000 undiagnosed cancers in Belgium (between 1 March – 18 September 2020).3 It is clear that hundreds of thousands of women have been affected as COVID-19 resulted in the reprioritisation of healthcare systems and resource allocation.  

Both cervical and breast cancer screening are well suited for digital technologies and the application of AI, given both require highly trained medical professionals to identify rare, subtle changes visually, a process that can be tedious, time-consuming, and error prone. Artificial intelligence and computer vision are technologies which could help to significantly improve this.

In Europe, there were moves towards digital transformation already taking place prior to the pandemic. For example, over the past several years we have seen regulatory approvals and adoption of digital pathology in many countries and widespread use of telemedicine for consulting and even making diagnoses. We must not abandon these gains and ensure we accelerate digital transformation and AI adoption as we move into a post-COVID world.

What does AI mean in this context?

Before examining the three specific areas where digitisation and AI can help, it is important to define what we mean by AI. It is the application of AI to medical imaging to help accelerate detection and diagnosis. Digitisation is the vital first step in implementing an AI-driven solution – high quality images demand advanced cloud storage solutions and high resolution. The better the quality of the input, the more effectively trained an AI system will be.

The first area where AI-guided imaging can play a role is workflow prioritisation. AI, along with increased screening units and mammographers, has the potential to increase breast cancer screening capacity, by removing the need for review by two radiologists. When used as part of a screening programme, AI could effectively and efficiently highlight the areas that are of particular interest for the reader, in the case of breast screening, or cytotechnologist when considering cervical screening.

Based on a comparison with the average time taken to read a breast screening image, with AI 13% less time is needed to read mammogram images,4improving the efficiency with which images are reviewed. This time saving could mean that radiologists could read more cases a day and potentially clear the backlog more quickly.

For digital cytology for cervical cancer screening, the system is able to evaluate tens of thousands of cells from a single patient in a matter of seconds and present the most relevant diagnostic material to a trained medical professional for the final diagnosis. The job of a cytotechnologist is to build a case based on the cells they see. Utilising these tools, we are finding that cytotechnologists and pathologists are significantly increasing their efficiency without sacrificing accuracy to help alleviate the backlog of cervical screening we are seeing in many countries.

Prioritising the most vulnerable patients

Another key opportunity is applying AI to risk stratification, as it could help to identify women who are particularly at risk and push them further up the queue for regular screening. For example, women with dense breast tissue have a greater risk factor than having two immediate family members who have suffered from breast cancer.5 What is more, dense breasts make it more difficult to identify cancerous cells in standard mammograms. This means that in some cases cancers will be missed, and in others, women will be unnecessarily recalled for further investigation.

As we tackle the backlog, a simple way to ensure that those most at risk are seen first, would be to analyse prior mammograms of women on the waiting list with AI-guided breast density software to retrospectively identify those women most at risk. These women could then be moved to the top of the waiting list for mammograms to reflect their increase likelihood of developing cancer.

Collaboration across borders

Finally, cross border collaboration, which has been a hallmark of the pandemic, in full compliance with data protection laws, can be significantly improved with AI. Firstly, this is through enabling knowledge and best practice sharing and secondly, by pooling resources to aid underserved areas. Both these could alleviate the backlog through creating efficiencies.

The recently launched ‘Europe’s Beating Cancer Plan’ is a new approach to EU cancer prevention, treatment and care and highlights the importance of exchanging findings between small and large Member States and to have access to crucial health data on the potential causes of cancer and promising treatments for it. Medical staff and hospitals will be able to tap into a wealth of shared information and use AI to process health data rapidly to better inform screening programmes. Ultimately it will ensure that patients across the EU can benefit from better care and treatment.

Finding new workforce models

In terms of being able to pool resources, this is relevant for Europe, but also will allow resource to be matched to demand beyond European borders. More than half a million women are diagnosed with cervical cancer each year and the majority of these occur where there is a lack of guidance to conduct the screening programme.6 The digital transformation of cervical screening can connect populations that desperately need screening to resources where that expertise exists. For example, developing countries in Africa could collect samples from patients and image these locally, but rely on resources in Europe to support the interpretation of the images and diagnoses. Digital diagnostics brings the promise of a ‘taxi-hailing’ type model to cervical cancer screening – connecting groups with resources (drivers with cars) to those who are in need (passengers): this is an efficient way of connecting laboratory professionals to doctors and patients around the world.

Diagnostic innovation is on a trajectory that we cannot ignore; we must collaborate across borders to harness its power, so cancer screening programmes get back on track. AI is a fundamental piece of the innovation puzzle and we are proud to be at the forefront of AI solutions for our customers and partners.

«« 8 Tips to Incorporate POCUS into Enterprise Imaging Programme

25k More Patients with Breast Cancer Can Receive Crucial Test »»


FIPRA. FIPRA report on the impact of the COVID-19 pandemic on breast cancer screening in Italy, France, Spain, UK, Poland, Greece, Belgium and Sweden. 2021, Mar 31.

2 Shearing, H. Coronavirus: Missed smear tests put 'pressure' on NHS [Internet] quoting Jo’s Cervical Cancer Trust data. BBC News; 2020 [cited 2020 Jun 17] Available from:

3 Belgian Cancer Register [Internet]. COVID-19. 2020 – c2020 [cited 2020 20 Nov]. Available from: 

4 Keller B, Kshirsagar A, Smith A. 3DQuorum™ Imaging Technology. Improving radiologist performance through Artificial Intelligence and SmartSlices. WP-00152-EUR-EN Rev 001 (10/19) US/International © 2019 Hologic, Inc.

5 American Cancer Society [Internet]. Breast Cancer Facts & Figures 2019-2020 [cited 2021 March 17]. Available from:

6 WHO [Internet]. A cervical cancer-free future: First-ever global commitment to eliminate a cancer; c2020 [cited 2020 Nov 17] Available from: 

Published on : Mon, 7 Jun 2021

Related Articles

As much of the world ramps up COVID-19 vaccinations, questions continue to arise about the potential side effects of the available... Read more


Four radiologists share their passion for good breast health—the key to detecting cancer at its earliest, most treatable stage.... Read more


SAVING LIVES, MINIMIZING INVASIVE TREATMENTS “It’s an undisputed fact, and I don’t think anyone would disagree, that annual... Read more

breast cancer, breast imaging, breast screening, 36th Annual Miami Breast Cancer Conference, women's healthcare Getting Cancer Screening Programmes Back on Track with AI and Digitisation

No comment

Please login to leave a comment...

Highlighted Products