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Introduction
Background
Dedicated ultrasonic breast scanners were first reported in 
the 1960s [1, 2]. Over the last 5 decades the development 
of automated whole breast ultrasound (US) scanners has 
accelerated by advances in higher US image resolution  
and increased computational processing power to handle 
three-dimensional (3D) image-sets in real-time [1–3]. The 
use of automation to acquire ultrasound images to detect 
breast cancer is similar to the renaissance of tomography  
in digital breast tomosynthesis (DBT) in that they both 
combine a long established imaging technique, ultrasound 
or tomography, with a newer ability to digitally store and 
process 3D imaging sets. The use of volumetric images of 
the breast allows for representation of the entire breast 
volume as a scrollable stack of images on a workstation 
monitor. The achieved higher 3D resolution of the breast 
tissue can result in higher displayed spatial 3D resolution. 
In comparison, handheld (HH) US and full field digital 
mammography (FFDM) store images in rather static two- 
dimensional (2D) projections. When HH US is used, radial 
and antiradial or transverse and longitudinal planes are  
frequently used as orthogonal projections to record  

significant imaging findings in the picture archiving and 
communication system (PACS). To capture the images in 
FFDM technique, the mediolateral oblique (MLO) and 
craniocaudal (CC) views are the most commonly used  
projections for interpretation. For both mammographic 
modalities, FFDM and DBT, the use of X-rays is required  
to radiograph the breast tissue. Unlike with X-ray imaging,  
no ionizing radiation is necessary to create the images  
with US high frequency sound waves and with magnetic 
resonance imaging (MRI). Meanwhile MRI is still in need  
of contrast medium (CM). In this regard automated ultra-
sound (AUS) is in today’s standard the only modality able 
to depict the whole breast in a tomographic representation 
without the use of ionizing radiation or need of contrast 
medium (Table 1). The clinical benefit of using higher  
3D spatial resolution in AUS and DBT is that it may enable  
better differentiation of benign and malignant findings 
compared to a static 2D image interpretation. The transition 
to a volumetric breast examination reading may minimize 
the masking effect of overlying tissue in DM and the opera-
tor dependence in US [4–6]. A more widespread use of  
volumetric breast ultrasound modality systems however 
requires evaluation of the advantages and challenges 
when introduced into the clinical setting to unfold its full 

 2D DM Tomo HH US AUS Breast MRI

Whole breast depicted Yes Yes No Yes Yes

Tomographic (thin slices) No Yes Yes Yes Yes

No ionizing radiation (IR)  
or IV CM

Has IR Has IR Yes Yes Has CM

Score +1 +2 +2 +3 +2

Table 1:  Breast imaging modalities in clinical use today categorized by the ability to depict the whole breast, to be tomographic in image 
representation, and the need to use ionizing radiation (IR) or intravenous (IV) contrast medium (CM). Over the last two decades digital 
breast tomosynthesis (DBT) and automated breast ultrasound (AUS) have become more widespread in clinical use. In addition to Breast 
MRI, DBT and AUS enable depiction of the whole breast in a tomographic representation. Whereas DBT involves the use of ionizing 
radiation to produce the images, MRI is currently still in need of IV contrast medium application to provide diagnostic kinetic curve type 
assessment for classification of breast lesions. AUS however has an advantage since it is tomographic and depicts the whole breast 
without the need of ionizing radiation or IV contrast medium.
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potential. To support the transition from using 2D oriented 
modalities to a successful clinical integration of 3D modali-
ties, this publication presents material that is based on  
decade long experience in AUS technology and in produc-
tion of educational programs benefitting physicians in  
AUS interpretation. The aim of this article is help transition 
3D AUS to a broader audience and to increase specificity 
and positive predictive values by decreasing false positive 
interpretation results. 

AUS image acquisition and positioning
To acquire the images a wide field of view ultrasound 
probe with a width of 15.4 cm travels from inferior to  
superior over the breast tissue to capture the images in  
a transverse direction. The ultrasound probe is covered  
by a housing. At the bottom of the housing a one-time  
use mesh is attached to protect the scanner. The images  
presented in this article are obtained with an AUS system 
that scans the patient in a supine position (ACUSON S2000 
Automated Breast Volume Scanner; Siemens Healthineers, 
Mountain View, CA, USA). To yield a better quality of 
scanned images and to lower the frequency of artifacts 
while scanning, a coupling lotion is used and is spread 
evenly over the breast before the scanner is positioned  
on the patient’s breast. While the image-slices are scanned 
one after another, the images are digitized and stored on 
the AUS machine. One complete scan cycle is finished in 
about 60 seconds and forms the original set of images that 

includes a maximum of 320 images per scan. The original 
set of images is acquired in the transverse direction and 
builds the basis for later software processing to reconstruct 
two additional orthogonal planes per scan, the coronal 
plane (Z) and the sagittal plane (Y) (Fig. 1).

Usually three scans per breast are obtained to cover  
all of the breast tissue in the anterior-posterior (AP), lateral 
(LAT), and medial (MED) position of the transducer. The 
image-sets resulting from the AP, LAT, and MED positioned 
scan are identified as views in this article and differentiated 
from the three orthogonal planes per scan, the transverse, 
coronal, and sagittal planes.

Reconstruction of additional planes
After acquisition of usually six scans per examination,  
three per breast, the images are sent to the PACS. When 
the studies are received by the PACS, the reading software 
on the physician’s workstation allows for interpretation of 
the AUS examinations. To display the volumetric image-set 
for interpretation, the acquired transverse plane is recon-
structed in two additional orthogonal planes, the coronal 
and sagittal planes. The coronal plane (Z) as a reconstruct-
ed plane depicts the entire breast of a supine positioned 
patient. On the coronal plane the breast tissue is presented 
with the patient similarly positioned as for a potential  
interventional ultrasound guided procedure or breast  
surgery (Fig. 2). The reconstruction, with the help of the 
coronal plane, allows for improved depiction of imaging 

1   Image acquisition. The wide field of view ultrasound probe is 
positioned in anterior-posterior position on the patient’s breast. 
While traveling from the inferior to the superior region of the 
breast the images are consecutively recorded in the transverse 
plane (X) (green arrows). An oval parallel circumscribed hypo- 
echoic mass can be seen on the transverse plane in this case of  
a 29-year-old woman with a history of biopsy-proven fibroadeno-
mas. The same mass is also seen in the inferior region after 
reconstruction on the coronal plane (Z) as well as the sagittal 
plane (Z) next to similar appearing lesions in this multiple  
mass case.

2   Reconstruction of AUS planes. Images from the same patient  
as in Figure 1 are shown. There are at least two circumscribed 
hypoechoic lesions in the lower region of the breast on the 
reconstructed coronal plane (Z) of this anterior-posterior (AP) 
view. The larger more superficial located lesion is in focus on the 
transverse plane (X). The layer of image-slices in the middle and 
right portion of the figure demonstrates the transverse plane (X) 
as the acquired set of images that allows for reconstruction of the 
two other planes, sagittal (Y) and coronal (Z). The lesion in focus 
on the transverse plane (X) is also in focus on the reconstructed 
sagittal plane (Y) and is identifiable as more superficial then the 
other lesion that is seen in the upper region of the breast on the 
same sagittal image.
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findings such as architectural distortion as well as multiple 
benign-appearing masses as seen in Figure 2. The darker 
appearing tissue is fatty and the lighter appearing tissue  
is fibroglandular. Usually a yellow circle or square denotes 
the nipple location.

Basic principles in image interpretation
Image interpretation by using AUS-integrated-software
One method to begin the AUS image interpretation is  
to read both AP-view coronal planes, right and left, side- 
by-side. Starting at the skin level, scrolling through the  
reconstructed tissue layers allows for a rapid overview  
of the anatomic representation. In a bilateral comparison 
the image findings can be identified by sweeping through 
the planes towards the chest level (Fig. 3).

During the first cycle of viewing the images, the coro-
nal side-by-side mode enables the bilateral presentation  
of the anatomy and an overview of findings. Passing the 
chest level in an upward direction, an area of interest  
can be further examined in more detail by switching the 
hanging protocol to the 3 planes in 1 view mode (Fig. 4).

In addition to using the interpretation software to  
navigate AUS studies, the software includes tools to  
manipulate the images in real-time. There are a number of 
integrated tools to support the assessment of AUS exams.  
Specifically, the Zoom-tool and the Rotate-tool are useful 
instruments for further lesion characterization, especially 
on the acquired transverse plane. Figure 5 demonstrates 
the use of the Zoom-tool to magnify an area of interest. 

In other instances, the rotational tool can be helpful to 
interpret image findings. By simulating tilting and rotating 

3   Use of hanging protocols: Coronal plane side-by-side mode. 
Starting at the skin level with the right and left coronal planes 
side-by-side allows for a time saving bilateral interpretation of the 
anatomy and findings by scrolling through the reconstructed 
layers towards deeper levels (symbolized by the arrow). At the 
chest level the pectoralis muscles and rib cage can be identified.

4   Use of hanging protocols: Coronal plane side-by-side (coronal side-by-side) and 3 planes in 1 view (3-in-1-view) modes. If an area of interest 
is focused on the coronal plane, a switch to the 3-in-1-view mode can reveal further details (arrow). In the example shown, the area in 
crosshairs on the coronal side-by-side is resolved on the 3-in-1-view mode. The targeted area on the coronal plane (Z) may be perceived as an 
oval circumscribed lesion when only the coronal plane is interpreted. When switched to the 3-in-1-view it becomes apparent that the region in 
focus represents a fat lobule and summation of cooper ligaments as recognized on the transverse (X) and sagittal (Y) planes, rather than a 
circumscribed lesion.
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of a HH probe in real-time, an area of interest can be  
further evaluated, such as in cases of conspicuous breast 
duct findings (Fig. 6).

Benefits of the coronal plane
The coronal plane can provide an overview of all covered 
breast tissue in one single view. When displayed side-by-
side this plane is best for representing the breast anatomy 
and for rapid recognition of findings. As an example, the 
radial array of ducts entering the nipple is easily recognized 
as well as the echogenicity distribution patterns in  
correlation to the breast composition patterns in mam- 
mography. The reconstructed plane facilitates immediate 
recognition of masses, perceived as holes, and supports 
judgement of bilateral distribution and multiplicity of  
findings (Fig. 7). Especially architectural distortion (AD) 
can easily be identified, for instance recognizable as  
spiculation in cases of AD involving a malignancy. The  
conspicuity of AD seen on the coronal plane can be similar 
to that seen on tomosynthesis.

Image finding resolution
Shadowing is a challenging entity in AUS interpretation. 
Because of US inherited principles there are a number of 
reasons that can cause the appearance of shadowing on 
US images. Some of these reasons are due to US technique 

and can be artifact, such as ringdown artifact due to a 
small air bubble between the scanner probe and the skin. 
Other underlying reasons can be indicators of a true abnor-
mality, such as posterior shadowing of a malignant mass  
or shadowing due to a surgical scar [5]. Differentiation  
of particular types of shadowing on AUS can lead to the 
classification of a finding as an artifact or indicate a true 
abnormality (Fig. 8). The distinction of findings between 
artifact and true abnormality can decrease false positive 
recommendation (FP) such as the recommendation to  
recall a patient from screening. Distinguishing between 
true abnormalities not needing further workup, e.g.,  
surgical scar, and suspicious abnormalities, e.g., posterior 
shadowing associated to a malignancy, can further  
influence the FP-rate and therefore positive predictive  
values of physician’s recommendation.

Principles to resolve shadowing as a 
challenging entity
Utilize additional planes to resolve shadowing
Image findings seen on the coronal plane can at times be 
inconclusive in assessment without utilization of additional 
planes. In Figure 9 the coronal plane shows an irregular  
hypoechoic area in the upper region of the breast. If only 
the coronal plane would be interpreted, the targeted area 

5   Use of software tools: Zoom-tool. The Zoom-tool is one of the 
provided software tools that allows magnification of findings 
within the interpretation software on the PACS workstation. In this 
case of a 31-year-old woman with left upper outer quadrant pain, 
the Zoom-tool is used on the transverse plane (X). The cystic area 
in crosshairs is located in the upper outer region as identified on 
the coronal plane (Z). On the sagittal plane (Y) the same area is 
also identifiable as in the upper region. The use of the Zoom-tool 
on the acquired plane can increase the confidence to judge the 
area of interest as a cluster of cysts. The magnification demon-
strates only cyst walls without identification of an internal mass  
or other suspicious findings. This observation allows for a BI-RADS 
2 assessment without the necessity for further workup. If this  
was assessed as BI-RADS 3, then follow-up examinations may  
also exclude a malignancy. This case was assessed as BI-RADS  
2 without a false negative result.

6   Use of software tools: Rotate-tool. Here a case of a 43-year-old 
woman recalled from screening mammography for an asymmetry 
is shown. There is an area of questioned architectural distortion 
(AD) and convoluted ducts seen on the coronal plane (Z). The 
Rotate-tool used on the transverse plane (X) helps the interpreter 
to follow the tubular structures and identify them as discrete 
tortuous ducts with associated AD. Due to the associated AD and 
growth of the area during follow up, the finding was assessed  
as BI-RADS 4B and recommended for US-guided core biopsy. 
Histo-pathology yielded flat epithelial atypia (FEA), columnar  
cell change, apocrine metaplasia, and fibrosis and surgical 
consultation was recommended.
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could represent shadowing associated with an irregular 
mass. In cases like this, utilization of an additional plane, 
either the acquired transverse or reconstructed sagittal 
plane, may help to distinguish between a suspicious and a 
benign finding. In the case of Figure 9, the use of a second 
plane clearly reveals the typical pattern of hyperechoic  
and anechoic horizontal lines originating at the skin with  
posterior shadowing seen on both additional planes, the 
transverse as well as the sagittal planes. By identifying this  
pattern as ringdown, the finding is classified and resolved 
as an artifact that is caused by interrupted contact between 
the transducer and the skin because of trapped air while 
scanning. This artifact can be minimized by an optimal 

scanning technique and careful application of lotion during 
the scanning process [5, 9]. 

Utilize a second view to resolve shadowing
In Figure 10, there is shadowing seen on all three planes 
on the right AP view (RAP). The shadowing seen in the  
peripheral region of the RAP view coronal plane is also 
identified on the RAP transverse and sagittal planes. An  
underlying suspicious finding cannot be excluded by solely 
using additional planes as shown in the prior example of 
ringdown artifact. In cases like this, utilization of a second 
view can support differentiation of an artifact from a true 
abnormality and potentially avoid false positive recalls. 

7   Coronal plane. Shown is the right (R) and left (L) anterior-posterior 
(AP) coronal plane of the same patient as in figure 1 and 2. The 
bilateral distribution of the multiple masses is easy to appreciate 
on both coronal planes side-by-side. The use of the reconstructed 
plane allows for characterization of the presented findings as 
multiple bilateral similar-appearing circumscribed masses. A 
BI-RADS 2 category assessment may be appropriate according  
to published studies supported by ACRIN 6666 data with no 
malignancies found with at least 2 years of follow-up [7]. 
“Multiple bilateral masses” is defined here as at least 3 masses  
in total and at least one per breast [8].

8   Differentiation of shadowing on AUS as indicator for a true 
abnormality or an artifactual finding. Top: linear shadowing 
originating at the skin and leading towards the chest level.  
The appearance is classic for a surgical scar and represents  
the surgical pathway leading to an excision site. The shadowing  
is caused by a true abnormality. Middle: shadowing with the 
typical appearance of alternating hyperechoic and anechoic 
horizontal lines originating at the skin with posterior shadowing. 
This pattern confirms ringdown as the cause of shadowing and 
confirms the presence of an artifact. Bottom: posterior shadowing 
due to a malignant mass. Due to attenuation of the ultrasound 
beam passing through a malignant mass, shadowing can  
be seen posterior to the mass as in this example of an invasive 
lobular carcinoma (ILC).

9   Utilization of an additional plane. There is an irregular appearing 
hypoechoic area in the upper region of the breast seen on the 
coronal plane (Z). When an additional plane is used (arrow), the 
finding is clearly resolved as an artifact due to the identification  
of ringdown on the transverse (X) as well as the sagittal (Y) 
planes. The typical pattern of ringdown is recognized on the 
magnification overlaying the transverse plane (square).
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10   Utilization of a second view. Peripheral shadowing is seen on the right AP view coronal plane at the 9:30 position 2.5 cm from the nipple (FN) 
in this case of a 36-year-old woman with dense breast tissue. The shadowing is also present on both other RAP planes, the RAP transverse and 
sagittal planes. When the right lateral (LAT) view is selected as a second view to display (arrow), only normal fibroglandular tissue is found in 
the same position as on the anterior-posterior scan. The second view resolves the peripheral shadowing seen on RAP as artifactual rather than 
as shadowing caused by an underlying suspicious lesion. The peripheral shadowing now seen at 6 o’clock on the right LAT view coronal plane 
was resolved in the same way as just demonstrated with the 9:30 o’clock RAP view coronal plane shadowing. Yellow circles mark  
the nipple region.

11   56-year-old woman with a history of a lumpectomy on the right. Excisional biopsy ten years ago yielded invasive mammary carcinoma and 
ductal carcinoma in situ grade 1. The patient returns for diagnostic follow up with shown images. Shadowing next to a surgical scar is seen on 
all three planes on this RAP view and a recurrence is difficult to exclude. Switching to the second view however allows for identification of the 
same finding in the same location at 9:00 o’clock and 5 cm FN as fat necrosis. Therefore, the case can appropriately be assessed as BI-RADS 2 
and the patient can return to screening. Yellow circles mark the nipple region.

Figure 11 illustrates another case utilizing a second view. 
The peripheral shadowing on the RAP view is again recog-
nized on all three planes. Exclusion of a suspicious finding is 
again difficult when only this view is interpreted. However, 
when switched to the second view, the image finding in 

the same location becomes clearly identifiable as a benign 
finding. The rim eggshell calcification with posterior  
shadowing is diagnostic for fat necrosis. Here, the second 
view helps to classify a true abnormality as a benign finding. 

8

Automated Breast Ultrasound White paper Breast Care

siemens-healthineers.com/abvs



Contact 
Ingolf Karst, MD, PhD, MA 
Breast Imaging 
Northwestern Medicine 
250 E Superior St 
Suite 4-2304 
Chicago, IL 60611 
USA 
ikarst@nm.org

In comparison, Figure 12 shows shadowing originating 
from a malignant mass. The shadowing seen posterior to 
the mass is due to attenuation of the ultrasound beam.  
The second view confirms the presence of an irregular  
hypoechoic mass with posterior shadowing and associated 
AD. As seen in the examples of Figures 10 to 12, utilization 
of a second view can help to distinguish a true lesion from 
an artifactual finding. Accurate classification of shadowing  
as artifactual and not caused by a suspicious finding may 
lead to a lower FP-rate and thus increase the positive  
predictive value of recommendations.

Conclusion
Over the last decade automated breast ultrasound (AUS) 
and digital breast tomosynthesis (DBT) were added to  
complement three-dimensional modalities available to 
breast imagers. With an increase in three-dimensional (3D) 
spatial resolution at AUS and DBT, breast cancer detection 
may also increase. Nonetheless, adoption of these 3D  
modalities into daily practice includes reading of additional 
volumetric imaging information and a potential need to  
resolve artifacts. In an effort to reduce preventable 

12   Invasive lobular carcinoma (ILC) for comparison. The shadowing caused by a malignant mass is seen in all three planes on the right AP view at 
11:00 o’clock 7 cm FN. The right superior view (SUP) as a second view (arrow) supports identification of the same image findings in the same 
location as seen on the AP view and therefore confirms the finding as associated to a true abnormality. The example illustrates the difference 
in appearance between shadowing associated with a malignancy and shadowing caused by dense breast tissue in the periphery of a scan, 
that can be resolved on the second view as shown in figure 10. Yellow circles mark the nipple region.

false-positive recommendations and to resolve findings, 
utilization of a methodical approach can help differentiate 
benign from malignant findings on AUS. Identifying the 
factors which influence the false positive rate, and there-
fore positive predictive values, may lead to higher accuracy  
in automated breast ultrasound image interpretation 
during its more widespread integration into the breast  
imaging practice.
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Digital Breast Tomosynthesis in Screening – 
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Abstract 
The development of digital breast tomosynthesis (DBT)  
for the detection of breast cancer has resulted in many  
trials showing that an improvement in detection is  
possible with DBT. However, these trials have also shown 
that reading DBT images is considerably slower than  
reading standard digital mammography (DM) cases. Not  
surprisingly, it takes longer to read a stack of 50 image  
slices than one standard mammogram. This increase in 
reading time for DBT interpretation limits its introduction  
in large screening programs, such as the regional or  
national screening programs commonly found in Europe. 
Therefore, for the better part of this decade, multiple  
efforts and research have taken place to demonstrate the 
feasibility of different time-saving strategies when reading 
DBT exams. As a result, it now seems more feasible than  
ever that the reading time in DBT could be reduced to 
match or even be lower than that of DM. For these  
strategies to be introduced in every-day use, however, 
some additional studies are needed. Here, we review the 
strategies proposed up to now to reduce the time required 
for interpretation of DBT cases in breast cancer screening,  
and discuss the current limitations in knowledge regarding 
some of these interpretations.

Introduction
Since digital mammography (DM) is a two-dimensional  
imaging modality, mammograms of the three-dimensional 
breast suffer from the phenomenon of tissue superposi-
tion. That is, tissues that are separated only vertically in  
the breast during compression are projected to the same 
location in the mammogram. This can result in either  
normal tissues resembling a malignant finding, lowering 
specificity, or normal tissue masking a real finding,  
lowering sensitivity. Of course, the higher the proportion 
of the breast that is composed of dense fibroglandular  
tissue, the higher the risk of superposition. To ameliorate 
this effect, currently a mammographic examination,  
especially for screening for breast cancer, involves the  
acquisition of two views; the cranio-caudal (CC) and  
the medio-lateral oblique (MLO) views. However, this is  
not a perfect solution, since the loss of performance due  
to this effect, especially in dense breasts, persists. 

Digital breast tomosynthesis (DBT) was introduced 
mostly to reduce this problem of tissue superposition.  
DBT involves the acquisition of multiple low-dose  
mammography-like projections from various angles over  
a limited angular range around the compressed breast  
(Fig. 1). These projections are then used to reconstruct a  
pseudo-3D volume depicting the breast tissue distribution 
[1–3]. This pseudo-3D volume is enough to reduce the  
impact of tissue superposition despite limited vertical  
spatial resolution, and results in improved clinical  
performance compared to DM [4–10]. 
However, a single DBT image typically consists of a stack  
of ~50 slices for a breast with a typical thickness under 
compression of about 50 mm. This increases the amount 
of information generated by DBT to be reviewed by the  
interpreting radiologist, which results in a reading time 

1   Schematic of a digital breast tomosynthesis acquisition, showing  
a geometry equal to that used in mammography, but with the 
X-ray source rotating around the compressed breast, acquiring  
a projection image at each position. The changing X-ray source 
position results in different projection images, with the features  
in the breast changing location in the images depending on their 
vertical location.

Translated 
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X-ray  
beam

Features  
of interest

Detector
Projections

Proj. 3

Proj. 3

Proj. 1
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that has been repeatedly reported to be double that of DM 
[11]. This increase in the demand of radiologist resources 
is one of the most important challenges needing to be 
overcome before DBT could be introduced in large popula-
tion screening programs as a replacement of DM. However, 
several alternative acquisition and reading strategies may 
be useful in optimizing the interpretation of DBT-based 
screening. This would allow for the potential of DBT, and  
its promise of improved outcomes, to finally be introduced 
in high-volume screening programs without a substantial 
increase in the expenditure of healthcare resources. The 
strategies and alternatives that have been proposed or are 
being investigated can be divided into two categories:  
alternative strategies to reduce the number of images that 
need to be interpreted, and strategies to read DBT faster.

Reduction of images to be read
As mentioned, currently a screening DM examination  
consists of the acquisition of two views per breast.  
The main reason for this is the attempt to ameliorate the  
effects of tissue superposition. Since this effect is, to a 
great extent, solved by DBT, then perhaps it is feasible to 
not acquire two views of each breast, and therefore, only 
acquire MLO DBT views during screening. If this were the 
case, the MLO view would be the chosen one due to it  
being the view with the largest tissue coverage.

The Malmö Breast Tomosynthesis Screening Trial  
(MBTST) involved the comparison of the screening  
performance of such a DBT acquisition strategy (MLO 
view-only), to that of two-view DM [5, 6]. In this prospec-
tive screening trial involving almost 15,000 cases, the use 
of single-view DBT resulted in an increase in the cancer  
detection rate of 34% over that obtained in the two-view 
DM arm; from 6.5 to 8.7 cancers per 1,000 women 
screened [6]. This strategy also resulted in an important 
increase in the recall rate of 44% (from 2.5% to 3.6%). 
However, the baseline recall rate was very low to begin 
with, and the DBT review did not include the use of prior 
images, an effective tool that is known to reduce recall  
rate substantially [12]. In a retrospective observer study, 
Rodriguez Ruiz et al. compared the detection performance 
resulting from interpreting single-view DBT to that of  
single-view DBT + single-view DM, two-view DBT + two-
view DM, and two-view DM only [13]. Although the  
retrospective, enriched case set nature of this study of 
course involved fewer cases than that in the MBTST, this  
trial allowed for the evaluation of multiple acquisition  
strategies, with all cases of all strategies interpreted by all 
participating radiologists. The authors did not detect any 
difference in performance among the four acquisition 
strategies. Therefore, it seems feasible that single-view DBT 
could be used for screening for breast cancer. However, 
both of these studies used the same wide-angle DBT  
system. Therefore, the generalizability of these results  

to DBT imaging performed with narrower-angle systems 
remains to be evaluated.

In European population screening programs, the most 
common standard is that all cases are double read by two 
different breast radiologists. Two other prospective trials, 
as part of their investigation into screening DBT, tested the 
hypothesis that the reduction in superposition effects with 
DBT results in images being easier to interpret, and  
therefore double reading not yielding as large an improve-
ment as with DM. In the STORM trial, Houssami et al.  
determined that single-reading of DM+DBT still resulted  
in an increase of over 40% in the cancer detection rate and  
a 26% reduction in recall rate, compared to double-reading 
DM alone [14]. An important improvement in performance 
was also detected by Romero Martin et al. as part of the 
prospective DBT trial in Cordoba, Spain [15]. In that  
study, the increase in the cancer detection rate with  
single-reading of DBT with a synthetic mammogram  
(a mammogram-like image generated from the DBT data) 
was over 20% compared to that with DM alone, while  
recall rate was reduced by over 40%.

With the introduction of AI-based automated systems 
that seem to be approaching, if not already have matched, 
human performance in interpreting breast images, both 
DM and DBT (16,17), it is now feasible to think that an  
AI system could be used to interpret all images, and that 
only the ones picked out as being more suspicious would 
need to be reviewed by a breast radiologist. This concept  
of triaging of normal cases has been investigated by a  
number of different research groups, all, for now, on  
DM images, having found that an important reduction  
in caseload can be achieved (ranging from 20% to 90%),  
with no loss in overall performance [18–20]. Given the 
similarity in the results of studies that have compared the 
stand-alone performance of such AI systems for DM and 
DBT, it could be expected that the same performance when 
using these systems for triaging of normal cases would  
be achievable. However, before such triaging could be  
introduced in the screening realm, its impact on large-scale 
screening programs would have to be evaluated prospec-
tively with real screening prevalence. This is especially  
important since it could be expected that the radiologists‘ 
behavior will be affected when facing a case set that has 
been through triaging by an AI system. Therefore, prospec-
tive clinical trials that gauge this impact are necessary.

Faster reading of images
The three strategies discussed above aim to reduce the 
number of images that are acquired or need interpretation 
by a breast radiologist. Once this number has been  
optimized, it would be beneficial to also minimize the time 
spent in interpreting each of these images. For this, two 
strategies have been proposed, the use of slabbing, and 
the synthetic image-driven interpretation of the case.
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To understand the motivation for presenting the  
reconstructed DBT volume as a few slabs instead of many 
thin slices, it should be noted that the spatial resolution in 
the vertical direction in DBT is very poor. Given the narrow 
angles subtended during a complete DBT acquisition (the 
tube movement of the widest angle DBT system covers  
an angular range of 50°), the DBT “volume“ is actually  
composed of highly non-isotropic voxels. The signals in the 
vertical direction included in one voxel can be considerably 
farther away than the 1 mm often mis-quoted as the slice 
thickness. In DBT, the slices are reconstructed 1 mm apart 
from each other, but this does not mean that they are  
1 mm thick. In fact, information from 5 mm or more away 
from the center of the slice may be included in a DBT slice 
[21]. Therefore, it could be logical that instead of dividing 
up a typical 50 mm thick breast into fifty 1 mm slices, such 
a breast could be depicted with considerably fewer, but 
thicker, slabs. Interpretation of these thicker slabs could be 
expected to take less time than interpretation of many 
more thinner slices. However, it should be ensured that  
all data required to produce a tomosynthesis volume is  
available in post-processing, meaning the reader can still 
choose to see the 1mm slices after scrolling through the  
8 mm slabs. In a pair of studies evaluating this hypothesis, 
it was found that using 2 mm thick slabs resulted in a  
reduction of 20% in the reading time, while still rendering 
all lesions visible [22, 23]. In another study, Agasthya et al. 
compared the reading time and performance when radiolo-
gists interpreted 8 mm slabs that overlapped by 3 mm to 
that of interpreting the regular slices (Fig. 2) [24]. The use 
of the slabbing technique resulted in equal detection  
performance with a 30% reduction in the reading time.

Another reading strategy that could substantially  
reduce the reading time per image is using the synthetic 
mammogram as the primary image for detection, instead 
of the reconstructed DBT stack. Under such a scenario,  
the DBT stack would not be reviewed by the radiologist  
to detect suspicious findings. Rather, the interpreting  
radiologist would review the synthetic mammogram, and, 
if any suspicious area is detected, he/she would, if needed, 
review that area in the DBT stack to determine if that is,  
indeed, a finding that needs to be recalled, or an innocu-
ous consequence of tissue superposition or other effect on 
the synthetic mammogram. An early study evaluating the 
feasibility of such an approach was performed by Murphy 
et al., finding that although 13% of the cancers included in 
the study would have been downgraded in suspicion, they 
still warranted recall, and therefore they would not have 
been missed [25]. It should be pointed out, however, that 
this is, as of now, not yet the intended use of the  
synthetic mammogram, and there are still probably many 
improvements that are needed in the generation of these 
images before they can be reliably used as the primary 
source for detection of actionable findings. However, with 
the advent of improved algorithms for constructing these 

synthetic images, probably in the future with AI having  
a role in this aspect, it can be expected that this could be  
a viable strategy in the future, especially for the interpreta-
tion of “easier“ cases.

Conclusion
It can be expected that all or a combination of these 
time-saving strategies, be they to acquire fewer images, 
have fewer images be interpreted by breast radiologists 
thanks to their interpretation by stand-alone AI systems, 
and/or by reading each image faster, could result in DBT-
based screening requiring the same, or fewer, resources as 
current DM-based screening, while resulting in improved 
lesion detection performance. For some of these strategies 
there is still a lot of evidence that needs to be gathered,  
or algorithms that need improvement, although some  
of them seem to be closer to implementation. In either 
case, demands on breast radiologists to reduce the time  
to make DBT screening in large population programs a  
reality seems feasible, soon.

2   Comparison between two stacks of images: (2A) thin slices 
separated by 1 mm; (2B) thick partially overlapping slabs.  
For example, combining 8 slices together with an overlap of  
three slices results in a five-fold reduction in the number of  
images in a stack.

“thin“ slices  
seperated by 1 mm

fewer “thick“ over- 
lapping slices

2B

2A
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Artificial Intelligence to Help Radiologists  
in the Early Detection of Breast Cancer with 
Mammography and Breast Tomosynthesis 
Alejandro Rodríguez-Ruiz, PhD and Nico Karssemeijer, PhD

ScreenPoint Medical BV, Nijmegen, The Netherlands
Siemens Healthineers and ScreenPoint Medical are partners committed to developing artificial intelligence based  
applications for breast imaging. This collaborative arrangement also includes the acquisition of a strategic minority stake 
in ScreenPoint Medical by Siemens Healthineers.

From CAD to AI systems
Since the 1990s, computer-aided detection (CAD) systems 
have been developed to automatically detect and mark  
suspicious breast lesions in mammograms, aiming to  
prevent overlooking of cancers especially in screening  
programs. Unfortunately, despite the wide implementation 
of these systems in clinical practice, no studies to date 
have found that mammography screening cost-effective-
ness improves when radiologists use CAD systems [1].  
This could be ascribed to two main limitations of these  
traditional systems: their low specificity (high false positive 
rate), and their simplistic radiologist-computer interaction 

by simply displaying marks [2]. Consequently, such low  
specificity also precludes the use of traditional CAD as  
a stand-alone reader for screening mammography.

However, the era of traditional CAD as the only  
possibility to support radiologists reading mammograms  
could be coming to an end, due to the rise of a new type  
of systems based on high-accuracy artificial intelligence 
(AI) algorithms. The success of novel machine learning  
algorithms based on deep learning convolutional neural 
networks is rapidly elevating the field of AI for medical  
imaging [3]. For mammography, AI systems hold the  
promise to succeed where traditional CAD failed [4, 5].

1   Example of the Transpara™ user interface in syngo.via (Siemens Healthineers) featuring decision support (circled area in mammogram with 
likelihood of cancer score, in this case 95, for an area which after biopsy was confirmed as an invasive ductal carcinoma) and the Transpara™ 
Score (bottom of the image viewport).
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In recent years, several deep learning-based algorithms  
for automated analysis of mammograms have been  
investigated, some of which have already shown very 
promising stand-alone detection results in experimental 
scenarios [6, 7]. The high-performance level of these new 
AI algorithms can allow the development of systems that 
can provide radiologists with an enhanced level of support, 
not simply displaying marks, but that can go deeper into 
diagnostic decisions such as determining the risk of a  
lesion representing cancer or confidently determining 
which screening exams do not contain any suspicious  
abnormality.

Improving reader accuracy – with focus on lowering 
the number of mammographically-detected cancers  
missed at screening – and reducing workload without  
compromising quality are the aims of most of the latest 
breast imaging AI systems. In this paper, we summarize  
the initial clinical evidence conducted with one of the  
first developed AI systems for mammography and breast 
tomosynthesis: Transpara™.

What is Transpara™ AI? Features and 
evidence-based validated performance
Transpara™ (ScreenPoint Medical BV, Nijmegen, The  
Netherlands) is a deep learning-driven AI system developed  
after decades of research in breast imaging and automated 
detection of lesions in mammograms at the Radboud  
University in Nijmegen. This AI system is FDA cleared for 
2D and CE marked for 2D mammography (DM) and  
breast tomosynthesis (DBT), and can be used in different 
reading workstations, as shown in one example in Figure 1. 
This AI system was designed to aid radiologists reading 
mammograms, by exploiting the latest developments in 

deep learning algorithms in combination with deep  
knowledge of mammography imaging physics and 
radiological patterns of breast cancer.

The AI system automatically detects breast cancer  
lesions in DM and in DBT exams from most mammography  
vendors [6, 8]. It has been trained with millions of exam-
ples of breast cancer, benign abnormalities, and normal  
tissue, all validated by biopsy results or follow-up exams. 
These images originate from a large multi-center and 
multi-vendor database representing a wide variation  
of techniques encountered in mammography practices. 
The results of the computations are presented to the  
user in two different features:
• Interactive decision support: during reading, users 

can query a mammographic region using a pointer.  
As a response, Transpara™ provides a region-specific 
level of suspicion (range 1–100, 100 meaning the 
highest suspicion for malignancy) as a second opinion. 
Additionally, suspicious regions-of-interest can be also 
automatically marked to reduce potential oversight  
errors with significantly less false positives than  
traditional CAD systems.

• Exam-based Transpara™ score: based on all the  
individual findings, each exam receives a score ranging 
from 1 to 10, depicting the increasing risk that the 
exam contains cancer. The screening mammograms 
are equally divided across score categories (10% in 
each), meaning that cancer prevalence is much higher 
in category 10 than in the rest (see Figure 2). If no  
potential abnormalities are found, a low score is as-
signed. The highest scores are assigned to exams with 
suspicious findings. Exam-scores are possible given  
the high performance of deep learning algorithms,  
and where not available with traditional CAD systems.

2   Distribution of the Transpara™ Score 
(version 1.6.0) in a consecutive 
screening population of 12,245 
screening 2D mammograms acquired 
with a Siemens Healthineers  
MAMMOMAT Revelation with 88 
screen-detected cancers (cancer 
detection rate = 7.2/1000). In a 
screening setting, the AI system places 
10% of the screening exams on each 
category, but the cancer prevalence  
is significantly higher in the highest 
category 10.
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According to two recent comprehensive studies using 
multi-center independent data [9, 10], the stand-alone 
breast cancer detection of the AI system (versions 1.3.0 
and 1.4.0) has been demonstrated to be as good as that  
of radiologists.

This independent evaluation data originated from  
eleven sites across the USA and Europe, adding up to 
around 3,000 exams with over 700 biopsy-proven mam-
mograms with cancer. The mammograms were acquired 
with devices of four different mammography vendors  
(Siemens Healthineers, Hologic, Philips, General Electric). 
Each exam was read by several radiologists, where in  
a total of 115 radiologists were included in this study.  
As a result, the AI system stand-alone interpretation of  
mammograms was compared to more than 30,000  
radiologists‘ interpretations.

The breast cancer detection performance of  
Transpara™ in DM was compared to the performance of  
radiologists in terms of area under the receiver operating 
characteristic curve (AUC) using a predefined non- 
inferiority margin of 0.05. In the first study, the AUC of AI 
was non-inferior to the average AUC of 101 radiologists 
(0.841 vs. 0.814, AI had 0.027 higher AUC, 95% CI of AUC  
difference = [-0.003,0.055]). Similarly, In the second study,  
the AUC of AI was non-inferior to the average AUC of 14 
radiologists (0.887 vs. 0.866, AI had 0.021 higher AUC, 
95% CI of AUC difference = [-0.021,0.063]). Interestingly, 
the AI system achieved a similar sensitivity as humans but 
at a higher specificity, emphasizing its potential use to  
discriminate normal cases as good as the best radiologists.

How does AI impact radiologists’ 
performance in 2D mammography and DBT
In 2018, a study published in Radiology [9] showed that 
Transpara™ is the first AI-based software designed to assist 
radiologists reading mammograms that makes them more 
accurate without slowing them down.

In this fully-crossed multi-center retrospective reader 
study, a sample of 240 screening mammograms (of which 
100 where screen-detected cancer, and 40 false positive 
recalls) were interpreted by 14 radiologists in the USA, 
once with and once without Transpara™ AI (version 1.3.0) 
in two distinct sessions. For each mammogram, the radiol-
ogists provided a forced Breast Imaging Reporting and Data 
System (BI-RADS) score and a level of suspicion (1–100, 
100 meaning high suspicion of cancer). When reading with 
AI support, radiologists could benefit of all the features  
of the device as indicated above. The mammograms were 
from two different vendors (Siemens Healthineers  
MAMMOMAT Inspiration and Hologic Selenia Dimensions), 
and radiologists had on average 10 years of experience 
with breast cancer screening.

The impact of concurrent use of AI in radiologists‘ perfor-
mance was analyzed in terms of accuracy (measured via 
AUC of the radiologists), specificity, sensitivity, and average 
reading time per mammogram.

On average, the radiologists‘ AUC was higher with  
AI support than with unaided reading (0.89 vs. 0.87,  
respectively; statistically significant, P = 0.002). For some 
radiologists, the improvement was up to 5% in terms of 
AUC. As seen in Figure 3, the increased performance was 
observed in the middle part of the ROC curve, suggesting 
that the AI system improves the evaluation of equivocal 
cases, where a second opinion is needed the most. In 
terms of recalls using the BI-RADS scoring, sensitivity in-
creased with AI support (86% vs. 83% P = 0.046), whereas 
specificity trended toward improvement (79% vs. 77%,  
P = 0.06). The improvement in AUC was observed inde-
pendently in all sub-analysis by lesion type, breast density, 
and mammography vendor. Another very important  
finding was that all radiologists trended to improve their 
accuracy with AI support, regardless of their experience,  
reducing the inter-reader variability (Fig. 4).

For the second endpoint of the study, reading time per 
screening mammogram, remained similar when using AI 
(3 seconds difference, 2%, P = 0.15). This was not the case 
when using traditional CAD systems, where reading time 
was higher [11].

3   Average receiver operating characteristic curves of the 14 
radiologists reading 2D mammograms unaided, and with support 
from Transpara™ AI. The area under the curve (AUC) is reported 
within parentheses.  
Adapted from the publication in Radiology [9].
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Recently, a new observer study with Transpara™ (to be  
presented at the European Congress of Radiology 2020) 
shows that radiologists also improve their cancer detection 
in DBT exams when using AI for support while simultane-
ously reading time is reduced.

The DBT study was performed by 9 radiologists (4–23 
years of experience) who read DBT exams with synthetized 
2D mammograms (Insight 2D) acquired with a Siemens 
Healthineers MAMMOMAT Inspiration device. Radiologists 
improved their accuracy performance in DBT when  
concurrently using AI (AUC + 0.041, P= 0.001, from 0.820 
to 0.861), while reading time was on average -20% lower 
when using the system, down to approximately 30 seconds 
per DBT volume. Finally, the stand-alone performance  
of the AI system in DBT images was also found to be  
comparable to that of an average radiologist (95% CI of  
the difference = -0.038, 0.078). These findings are in line 
with the results in DM for the same system and with other 
results in literature for DBT [12].

How can AI optimize the efficiency  
of screening programs?
Early studies indicate that AI can improve radiologists‘  
performance reading mammograms. In a screening set-
ting, the concurrent use of AI has therefore the potential  
to positively impact in terms of more homogeneous  
reading performance across sites, reduction in false  
negative and false positive assessments.

But beyond its concurrent use, given the radiologist- 
comparable stand-alone accuracy detecting breast cancer 
in mammograms, AI could potentially be used as an  
effective independent reader of the screening process,  
or as a triaging tool for screening mammograms [13].

Given that more than 95% of screening exams do  
not contain any abnormality, it could be hypothesized  
that AI can filter out a large proportion of these normal  
exams automatically. Preliminary studies indicate that  
current AI could confidently label up to 50% of screening 
mammograms, with little error (2%–7%) [13, 14] (see  
Figure 5 for an example). In screening settings where  
double reading of screening mammograms is performed, 
this 50% of screening mammograms could, for example, 
undergo single reading instead of double reading. Having 
one reader in the loop for these exams could ensure  
that the cancers in the group are not automatically missed, 
and also potentially reduce the false positive recalls of  
the program: overall improving the positive predictive  
value. This is suggested by study published in European 
Radiology in 2019 [13], where it was observed that  
the decrease in sensitivity when not reading those mam-
mograms with lowest AI scores is amply compensated  
by the increase in specificity, because less false positive  
assessments would be done (AUC reading only cases with 
scores 6–10 was non-inferior with non-inferiority margin 
0.05 to the AUC reading all cases).

Triaging screening exams with AI could allow readers 
in some settings to focus on the cases with higher cancer 
prevalence (see Figure 2) when they are more attentive, 

4   Area under the receiver operating characteristic curve (AUC) of each individual radiologists, 
reading 2D mammograms unaided and with Transpara™ AI support [9].
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5   Example of a highly likely normal 
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Transpara™ AI with an exam score of 1, 
which was confirmed normal with two 
years follow-up round.
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potentially also reducing the time that takes to recall  
women for diagnostic work-up. When considering the  
introduction of DBT for screening, using AI becomes more 
important to reduce workload given the increased reading 
time with DBT with respect to DM (up to twice as long) 
[15, 16].

Conclusion
Scientific studies are beginning to show convincing  
evidence that new generation breast AI systems can  
reach human-like performance and enhance the ability of 
radiologists to accurately detect breast cancer. In contrast 
to traditional CAD, these systems can be concurrently used 
and hold a great potential to reduce screening workload  
by acting as second reader, or by automatically labelling  
a large number of normal examinations with high negative 
predictive value. It is expected that with the continuous  
development in the field of AI some systems will soon 
begin to outperform most radiologists in a routine task 
such as mammography screening. This will enable more 
cost-effective screening scenarios in which the role of  
the human reader will change significantly. Before imple-
mentation, new screening methods involving AI should  
be validated thoroughly, while QA procedures for AI  
products have to be implemented to ensure safety and  
reliability of breast screening.
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Abstract 
Digital Mammography has evolved into more accurate  
techniques, such as Digital Breast Tomosynthesis and  
Contrast Enhanced Dual Energy Mammography (CEDEM). 
CEDEM combines the high spatial resolution of Digital 
Mammography and the added value of neoangiogenesis.  
To obtain this functional information, the administration of  
intravenous iodinated contrast medium is required. A dual 
energy acquisition is performed: First, a low-energy image 
(similar to conventional DM) and immediately, during  
the same compression, a high-energy image is acquired  
(to detect the contrast uptake). MAMMOMAT Revelation 
has been developed to perform CEDEM. This system uses  
a titanium filter instead of a copper filter to reduce the 
tube load during the high-energy acquisition. For this  
reason, the contrast enhanced mammography technique  
is known as TiCEM (Titanium Contrast Enhanced  Mam-
mography). In our experience, TiCEM is more accurate than 
DM and offers morpho-functional information of breast  
lesions [1].

Introduction
Mammography-based breast screening is the only breast 
imaging technique that has been proven to reduce  
breast cancer mortality [2]. DM offers the highest spatial 
resolution of all the imaging modalities in a radiology  
department, being capable of detecting very subtle micro-
calcifications that can be the first sign of breast cancer.  
DM is usually the initial examination used in breast  
imaging and for breast cancer screening because it is a 
widely available and inexpensive technique. However,  
DM has a variable sensitivity that ranges from 50% to 85% 
and is especially low in dense breasts. It is well-known that 
the sensitivity of DM drops in dense breasts because of  
the overlapping tissue [3]. This low sensitivity has resulted 
in the introduction of complementary techniques such as  
ultrasound and digital breast tomosynthesis (DBT). DBT  
can significantly increase the sensitivity of DM from 60.4% 
to 81.1% [4].

Magnetic Resonance Imaging (MRI) of the breast is  
considered to be the most sensitive technique to detect 
breast cancer, especially invasive tumors. This high  
sensitivity is due to the use of intravenous contrast agents  
(gadolinium-based contrast media). Most breast cancers 
enhance at 1–2 minutes after the administration of i.v. 
contrast because of neoangiogenesis, i.e., new vessels 
with increased permeability. This is the reason why MRI  
is a morpho-functional technique. However, MRI of the 
breast is still an expensive technique, with little availability 
in many centres. Furthermore, it can have high false  
positive rates because many benign conditions can take  
up i.v. contrast. Finally, MRI is not always feasible in claus-
trophobic patients and in a small number of patients with  
certain metallic devices such as some metal implants,  
aneurysm clips, or pacemakers.

Contrast-enhanced  
dual energy Mammography
DM is a purely morphological technique, based on the  
attenuation of X-ray photons in the tumoral tissue.  
However, DM can become a morpho-functional technique 

1   The MAMMOMAT Revelation performs Digital Mammography 
(DM), Digital Breast Tomosynthesis (DBT) and Contrast-Enhanced 
Dual Energy Mammography (CEDEM).
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by using intravenous iodine-based contrast agents. The 
physiological mechanism for the detection of breast cancer 
is similar to MRI: the malignant lesions are detected due  
to neoangiogenesis. However, the contrast uptake of  
tumors cannot be shown on conventional DM because this  
technique uses low energy (23–28 kV). A specific energy 
level is required to detect the contrast agent, which is  
higher than conventional DM, ranging from 45 to 49 kV. 
That is why contrast-enhanced mammography uses  
dual energy: First, a low-energy image is acquired,  
similar to conventional DM, and immediately after, a 
high-energy image is also acquired to detect the contrast 
uptake. Both acquisitions are performed during the same 
compression. The high-energy image itself does not  
have diagnostic capabilities due to the high kV, which  
produces low tissue contrast and has a grey-appearance. 
For this reason, the system is optimized to create a  
recombined image by subtracting the low-energy image 
from the high-energy image. 

This morpho-functional technique, known as  
Contrast-Enhanced Dual Energy Mammography (CEDEM), 
combines the high spatial resolution of DM with the  
information on neoangiogenesis. Both images, the low- 
energy (LE) and the recombined (R) ones, can be easily 
compared. This is a great advantage, because for one  
and the same lesion, the morphological and functional  
information is available at the same time [5].

The MAMMOMAT Revelation (Siemens Healthcare, 
Forchheim, Germany) uses a titanium filter instead of a 
copper filter for the high energy acquisition (Fig. 1).  
The commercial name for the CEDEM technique is TiCEM  
(Titanium Contrast-Enhanced Mammography). Its major  
advantage over other CEDEM techniques is better  
transmission with the same beam hardening, resulting  

in a reduced X-ray tube load. This allows for seamless  
examinations as the tube does not heat up as much while 
maintaining image quality [6].

Indications, contraindications, and risks
TiCEM is not intended to be used for the screening of a low 
risk population. The reasons are very simple: TiCEM uses 
i.v. contrast and a vein puncture is needed. Furthermore, 
the costs of the technique, although clearly lower than 
MRI, are higher than for DM.
The main indications of TiCEM are:
• Problem-solving technique: In a diagnostic setting,  

TiCEM can be used to evaluate palpable masses,  
asymmetries, mammographically detected masses,  
architectural distortions or any other doubtful findings 
on DM, DBT, or US. 

• Assessment of recently diagnosed breast cancers:  
TiCEM can help in the detection of multifocal,  
multicentric, or bilateral cancers. 

• Evaluation of response after neoadjuvant  
chemotherapy.

• Screening of selected groups: Intermediate risk  
women are those who have a higher risk of developing 
breast cancer in the future than the normal population 
but still have a risk of less than 25% during their life-
time (high risk women). This intermediate risk group 
comprises patients with a positive family history  
of breast cancer, some risk histological lesions  
(the known b3 histopathological lesions such as lobu-
lar carcinoma in situ, atypical ductal hyperplasia …),  
patients with personal history of breast cancer,  
and those with extremely dense breasts.

2   81-year-old lady who came to our institution because of a 
palpable lump in the left breast. The low-energy acquisition shows 
an irregular spiculated mass. The recombined image shows the 
enhancing mass and a subtraction of the normal fibroglandular 
tissue. Pathology: Invasive ductal carcinoma.

3   A 52-year-old woman attended at our institution with a palpable 
lump in the right breast. The low-energy image was considered 
normal. However the recombined image showed a suspicious 
enhancement, correlated with the palpable mass. Pathology: 
Invasive ductal carcinoma.
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Contraindications
TiCEM is contraindicated for patients with a known  
allergy to iodinated contrast agents, pregnant patients, 
and those with renal insufficiency. Although it is  
not formally contraindicated, TiCEM is not intended for  
patients with breast implants or patients who are  
breast feeding.

Risks 
The risks of TiCEM derive from the use of iodinated  
contrast agents. With the latest non-ionic iodinated  
contrast media, the incidence of hypersensitivity reactions 
is 0.7–3% [7]. Severe hypersensitivity reactions occur in 
only 0.02–0.04% of cases [8].

Description of the procedure
TiCEM is routinely performed in the mammography  
examination room. After a brief anamnesis to rule out  
allergy to iodinated contrast media, renal insufficiency, or 
pregnancy, informed consent is obtained. Then, an i.v. 
catheter is placed in a peripheral vein. An automatic  
injector is used for the administration of 1.5 mL per kg  
of iodinated contrast media at a rate of 3 mL per second.  
A delay is necessary for the perfusion of the contrast after 
the i.v. bolus (usually two minutes). Then the breast is 
compressed to obtain the images, usually starting with  
the pathological side. Several options can be offered:  
A unilateral study of the problematic breast (craniocaudal 
and MLO views) or a bilateral study using both views. 
During the same compression, the system acquires both 
the low-energy and high-energy images, which are quickly 
reconstructed and sent to a workstation for interpretation. 

Our experience
We started implementing TiCEM examinations in October 
2017. This technique was used as a problem solving  
technique and as an imaging modality to characterize 
breast lesions previously detected on DM, DBT, or US.  
Recently, we retrospectively assessed the TiCEM examina-
tions that were performed at our institution. From October 
2017 to June 2018, 80 patients with 120 histologically 
confirmed lesions were recruited.

Three readers with different experience level in breast  
imaging (expertise, intermediate level, resident), blinded 
to the final diagnoses, evaluated both the low-energy (LE) 
and the recombined (R) images. The readers classified the 
lesions according to the BI-RADS categories. 

Of the 120 lesions, 41 were benign and 79 malignant.  
The results were interpreted by means of ROC curves.  
The Area Under the Curve (AUC) of the combination LE+R 
was significantly larger than the AUC of LE alone for all the 
readers (p<0.001), irrespective of the experience of the 
reader (reader 1: 0.72 vs 0.86; p< 0.001; reader 2: 0.63 vs 
0.80; p<0.001; reader 3: 0.70 vs 0.79; p<0.001). These 
data were similar for dense and non-dense breasts. 

Conclusion
TiCEM is a new imaging modality that adds functional  
information to conventional mammography. This tech-
nique shares many of the indications of MRI, with the  
advantages of lower cost and better availability. In our  
experience, TiCEM shows better diagnostic accuracy than 
digital mammography, irrespective of the experience level 
of the radiologist.
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Introduction
Advances in our understanding of the human genome 
have transformed the way we understand and treat breast 
cancer. Today, oncologists and gynecologists are no longer 
saying “this is invasive ductal carcinoma,” but they can  
classify each breast cancer as one of four molecular sub-
types based on its genetic expression. In this context, 
breast MRI provides a highly valuable and non-invasive tool 
to differentiate between subtypes due to the differences in 
imaging phenotypes between subtypes. In addition, as the 
cancer subtype has a significant impact on the individual 
patient’s response to the currently available treatment  
options, MRI biomarkers may be used to predict complete 
response to therapy including non-surgical options and  
improve patient outcomes.

Breast cancer subtypes
While every breast cancer is unique, breast cancer can  
be classified into one of four distinct subtypes: luminal A, 
luminal B, human epidermal growth factor receptor 2 
(HER2) positive, and basal-like. Luminal cancers are the 
most prevalent breast cancer subtype, representing 70% 
(55% luminal A, and 15% luminal B) of all breast cancers. 
Non-luminal cancers are less common but still substantial, 
representing 30% (15% basal-like and 15% HER2) of all 
breast cancers (Fig. 1).

The breast cancer subtype that is present in an  
individual patient has a significant impact on the cancer’s 
aggressiveness. HER2-positive cancers and triple negative 
cancers are more highly aggressive whereas luminal A  
cancers (which are the most frequently diagnosed breast 
cancer) have a relatively good prognosis. In addition to the 
subtype, it must also be noted that intracellular receptors 
that respond to estrogen (ER) and progesterone (PR) hor-
mones as well as HER2 receptors have been shown to also 
impact cancer aggressiveness. All cells have HER2 receptors 
on them, but if they overexpress these receptors to a  
certain degree, then they are associated with a much more 
aggressive form of breast cancer with uncontrolled growth.

Luminal A
Luminal A cancers are low-grade cancers that are strongly 
ER positive and/or PR positive as well as HER2 negative. 
They show no amplification of HER2, the proto-oncogene 
for increased growth, or Ki-67, a biomarker for cellular  
proliferation. 

Luminal A cancers have a five-year survival rate of over 
80%, which is highest among the subtypes. Luminal A  
cancers respond favorably to hormone therapy with  
tamoxifen or aromatase inhibitors (AI). Nonetheless, they 
are associated with the risk of late mortality more than ten 
years after the original diagnosis. It is hypothesized that 
the cancer cells remain inactive for a long time, probably 
suppressed by the immune system, before late relapse 
takes place. Late relapse is not uncommon with this sub-
type and luminal A cancers are highly likely to metastasize 
to the bone.

On MRI, luminal A presents as a typical spiculated mass 
with significant desmoplastic response (Fig. 2).

1   Breast cancer subtypes and their respective prevalence. 
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Luminal B
Luminal B cancers have a lower level of expression of ER 
and PR than luminal A cancers, and 20–30% of these can-
cers have a concomitant amplification of HER2. Compared 
with luminal A cancers, luminal B cancers are higher grade 
(always medium- to high-grade), showing a higher Ki-67 
index and likely having lymph node involvement. Hence, 
luminal B cancers have a definite decrease in long-term 
survival, with a five-year survival of approximately 40%. 
Like luminal A cancers, luminal B cancers metastasize  
to the bone.

Mammoprint, Oncotype DX, and PAM-50 multigene 
assays identify breast cancers with an increased risk of re-
currence based on gene expression arrays using formalin- 
fixed paraffin-embedded (FFPE) specimens. They help  
to identify which patient can forego chemotherapy. For  
luminal B cancers, a low Oncotype DX recurrence score 
permits the recommendation of hormonal therapy alone, 
whereas a high recurrence score indicates that chemo- 
therapy is required as an adjunct treatment.

On imaging, luminal A and luminal B cancers look  
very similar. Tumor grading is the preferred mechanism for 
differentiating luminal A and luminal B cancers. Ki-67 can 
also provide great assistance but is not routinely recom-
mended. Ki-67 as a prognostic marker is associated with 
larger tumor size, lymph node involvement, and shorter 
disease-free survival (DFS) and overall survival (OS). Ki-67 
has shown to be positively associated with response to 
neoadjuvant chemotherapy (NAC).

HER2 positive
15% of all breast cancers are HER2 positive. These tumors 
usually have an intermediate to high nuclear grade. Prior  
to the introduction of traztuzumab (brand name Herceptin) 
and pertuzamab (brand name Perjeta), the untreated clini-
cal five-year survival rate was 31%; with these treatments, 
treating physicians have achieved a 33% reduction in mor-
tality and a 52% reduction in recurrence. 

Patients with HER2 positive cancers are more likely  
to have metastases that go to the viscera and the brain.

Basal-like
The fourth subtype of breast cancer is basal-like. Basal- 
like cancers have cells that are similar to epithelial cells 
(i.e., basal cells) that line the surface of the basement 
membranes along the ducts. 

While there are many different types of basal cell can-
cer, the clinical focus is on triple-negative invasive ductal 
cancers. The discussion of triple-negative cancers generally 
centers on the very aggressive nature of this cancer and 
that it is more common in African-American women. In  
this population, this cancer represents 27% of the overall 
cancer burden and 41% of the cancer mortality.

Adenoid cystic carcinoma is a rare type of invasive  
ductal cancer; however, while it is triple negative, it has 
very positive prognosis and outcome.

Basal-like breast cancer is usually high grade with an 
aggressive clinical course. Recurrence normally occurs in 
the first five years after diagnosis. Once a patient is beyond 
the five-year mark, the prognosis is normally positive; this 
is in stark contrast to luminal A type breast cancer. Basal- 
like breast cancer also has a high occurrence of metastases 
to brain, lung, and viscera. This subtype of cancer has the 
highest mortality rate.

The role of MRI and radiomics
Over the past few decades, breast MRI capabilities have  
improved dramatically. With radiomics and radiogenomics, 
MR images can now be analyzed so that the image is  
related to the genome, rendering a host of data that might 
positively affect patient outcome. Radiologists can identify 
volumes to be segmented on MR images. Computers  
can then extract hundreds of descriptive and quantitative  
features that, when combined with medical and genomic 
data, create a comprehensive database. Clinicians can  
compare pixels with adjacent pixels and analyze them in 
this context to render many different datasets.

As opposed to traditional human interpretation where 
radiologists interpret the shape, margin, internal enhance-
ment patterns, and kinetic curve of the lesion, computers 
can automatically segment abnormal lesions and paren-
chyma in the MR image, produce data on kinetic features, 
and analyze morphological texture features rendering a 

2   Zoomed T1-weighted post-contrast images (subtracted from 
T1-weighted pre-contrast) showing the typical representation  
of a luminal A breast cancer: a hyperdense, spiculated mass with 
irregular margins and significant desmoplastic response.
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more quantitative phenotype analysis. Radiomics has pro-
vided deeper analytic features in datasets, e.g., inter- and 
intra-tumor heterogeneity, site entropy, kurtosis, and site 
cluster dissimilarity, by extracting information from images 
that is imperceptible visually. This information is combined 
with clinical data and genomic profiles to facilitate the  
establishment of a clinically applicable prognosis prediction 
model. For example, MR images of a patient pre- and post-
NAC as shown in in Figure 3 could render feature data  
that provide the clinician with a greater ability to predict 
pathologic complete response (pCR) by showing whether 
viable tumor persists.

While radiomics encompasses numerous potential  
features, these features tend to be standardizable and 
quantifiable. Many research organizations have been inves-
tigating the utility of radiomics to determine breast cancer 
phenotype groups. At Memorial Sloan Kettering Cancer 
Center (MSK), we have found that clinicians are able to  
predict breast cancer phenotypes with radiomics nearly as 
accurately as Oncotype DX and PAM50. Therefore, it is pos-
sible that in the future radiomics could establish oncologic 
signatures in the same way that tissue sampling currently 
does but without the need for invasive procedures.

Neoadjuvant Chemotherapy
Neoadjuvant Chemotherapy (NAC) is increasingly used to 
treat breast cancer because it enables breast-conserving 
surgery in women who traditionally require a mastectomy. 
The goal of NAC is pCR, defined as the absence of any  
residual in-situ or invasive cancer. pCR has served as a  
surrogate of DFS and OS for a long time. 

Currently, the most accurately predictive test for pCR is 
MRI. MRI is more accurate in determining residual disease 
than physical examination, mammography, and ultrasound 
[3, 6]. However, MRI is not universally utilized as it still ren-
ders many false positives and false negatives. The absence 
of enhancement on MRI is called a radiologic complete  
response (rCR) even when there is a residual mass, and  
the pattern of the residual tumor is defined as contiguous 
or scattered to allow for better surgical selection. 

With radiomics, it is possible that clinicians will achieve 
better response prediction with MRI, and MRI could poten-
tially be used to replace surgery in the identification of  
patients with a complete response. Preliminary studies  
at MSK have shown that radiomics may be able to differen-
tiate responders from non-responders.

3   Subtracted, post-contrast 
T1-weighted images pre and 
post neoadjuvant chemo-
therapy. Patient showing 
complete imaging response 
which was confirmed as 
complete pathological 
response by biopsy. Highest 
response rates are seen  
in patients with TNBC  
and HER2+.

Pre NAC Post NAC

4   Proposed Care Pathway for 
patients with predicted pCR 
based on radiomic MRI 
profiling and biopsy-derived 
genetic profiling. In a 
planned trial patients shall 
proceed directly to radiation 
therapy without surgery.    

Chemotherapy Biopsy Surgery Radiation therapy
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New study conducted by  
Memorial Sloan Kettering Cancer Center 
Currently, the NAC course of treatment involves MRI moni-
toring at critical points. We have been conducting a trial  
to perform a percutaneous MRI-guided biopsy in patients 
who have had an rCR as determined on MRI with radiomic 
analysis prior to surgery. We hypothesized that MRI-guided 
biopsy will accurately diagnose a pCR in women with  
complete response on MRI comparable to surgery, thus  
allowing us to avoid unnecessary surgery in these patients. 
For the pilot phase, so far ten patients have undergone  
the MRI-guided biopsy (with a marker to allow targeting  
of the biopsy) post NAC but prior to surgery. Results from 
the pilot phase indicate that MRI-guided biopsy can yield  
a high level of accuracy in diagnosing a pCR. 

Therefore, we are currently proposing a full trial where 
the management of breast cancer in women with a pCR  
(as diagnosed by MRI-guided biopsy post-NAC) will proceed 
without surgery to the indicated duration of radiation  
therapy (Fig. 4). The salient open question is what quantity 
of residual disease precludes bypassing the surgical option 
for the less invasive method. Also, given that this would 
represent a new treatment protocol, the type of follow-up 
that would be required has yet to be determined.

Topics for further research
Another topic that is also worthy of further investigation is 
the association between parenchymal enhancement using 
contrast-enhanced MRI and the outcome of patients with 
breast cancer, as studied earlier by van der Velden et al. [4]. 
This study found that parenchymal enhancement is asso- 
ciated with long-term outcomes and higher parenchymal  
enhancement is associated with better outcomes. Women 
who have higher background enhancement who are treat-
ed experience better outcomes than women with lower 
background enhancement even though high background 
enhancement is associated with higher risk of developing 
breast cancer [4]. These results have been reproduced [5].

MRI features can also be investigated to predict cancer  
aggressiveness. For example, Lee et al. [1] found that  
spiculated margins were an indicator low grade (p < 0.001) 
and a low Ki-67 (p = 0.007); these are typical of luminal A 
breast cancers which have a high chance of pCR. Lee et al. 
also found that tumors with a high grade (p < 0.001) and 
that were ER negative were associated with poor patient 
outcome (p = 0.001). 

Lastly, peritumoral edema, which indicates increased 
vascular permeability with local cytokines, is associated 
with early metastatic disease and can also be investigated 
for its clinical utility [2].

Conclusion
MR imaging is moving into an era of technology where the 
status quo is being disrupted. Artificial intelligence (AI) and 
machine learning will produce marked advancements in 
risk prediction and cancer detection.

As advances continue to be made in the tools avail- 
able to clinicians, clinicians must ask themselves to find 
uses for these advancements that will improve treatment 
options, patient outcomes, and quality of life. Clinicians 
must be intellectually agile to use these tools to create new 
possibilities for the treatment of patients as individuals, 
guiding clinical practice toward personalized medicine.
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