Imaging

Imaging and intensive care medicine: an evolving partnership, A. McLean
Whole-body ultrasound in the intensive care unit: bedside ultrasound of the whole body, A. Denault et al.
Clinical assessment of critically ill patients by whole-body ultrasonography, R. Wiersema et al.
Using ultrasound to prevent diaphragm dysfunction, T. Schepens & E.C. Goligher
Imaging and ICU: advice from a radiologist, M. Sánchez
Abdominal point-of-care ultrasound in critical care: the secrets of the abdomen, J. Wilkinson et al.
Multimodal neuromonitoring catheter insertion: secondary complications, I. González & D. Santamarta
Required and preferred scanner features for different ultrasound applications: executive summary, ECRI Institute

PLUS

Advances in monitoring expired CO₂ in critically ill patients, M. Mezid & JC Richard
How to manage severe dengue infection, S. Jog et al.

Antifungal treatment in the ICU: best practice in managing fungal infections, A. Cortegiani & M. Bassetti

Interprofessional teamwork in the ICU: panacea or illusion? A. Xyrichis

Dr. Theodoros Kyprianou joins Editorial Board, K. Theodoros
Whole-body ultrasound in the intensive care unit

Bedside ultrasound of the whole body

Whole-body ultrasound can be used in the evaluation of many critical conditions including encephalopathy where brain and ocular ultrasound combined with transcranial Doppler can identify elevated intracranial pressure. Hypoxaemia is mostly related to pulmonary disease and lung ultrasound can rapidly identify the aetiology. Cardiac, lung and abdominal ultrasound will be useful to identify both the mechanism and aetiology of haemodynamic instability. Finally, in any oligo-anuric patient, renal ultrasound should be performed. The use of ultrasound is further supported by several prospective and randomised trials.

Bedside ultrasound, also known as point-of-care ultrasound (POCUS), has been considered the new fifth pillar of physical examination (Narula et al. 2018) and is poised to replace the stethoscope. Based on its Greek etymology, the term “stethoscope” composed of steth (breast) and scope (look into) may better suit miniaturised handheld ultrasound devices rather than the tool invented by Laënnec in 1819 for auscultation. However, portable ultrasound devices have the ability to look beyond the chest. Therefore, the term “bodyscope” or whole-body ultrasound (WHOBUS) would more appropriately describe the potential of bedside ultrasound (Karabinis et al. 2010). It does not imply that the whole body should be examined every time, but rather that ultrasound can be used to complement clinical evaluation where indicated. Applications of ultrasound in the intensive care unit (ICU) are numerous, enabling simultaneous assessment of multiple organs.

Two-dimensional (2D) or three-dimensional (3D) ultrasound offers a window into the anatomy of the patient, while haemodynamic physiology can be assessed using Doppler. In this article we describe current impact of WHOBUS into clinical care including specific clinical conditions that are common in the ICU and how WHOBUS can be used to identify the mechanism.

WHOBUS and the encephalopathic patient

Altered mental status in a critically ill patient requires consideration of a broad differential diagnosis, including various causes of intracranial hypertension, metabolic derangements and drug intoxication. The diagnostic approach requires careful history, physical examination, and complementary diagnostic investigations. Point-of-care neurologic ultrasound in the encephalopathic patient enables the critical care physician to rapidly detect life-threatening conditions including (but not restricted to) the presence of raised intracranial pressure (ICP) (Maissan et al. 2015; Lau and Arntfield 2017; Denault et al. 2018), midline shift from a space occupying lesion such as traumatic brain injury or stroke (Denault et al. 2018), and cerebral vasospasm following subarachnoid haemorrhage (Denault et al. 2018). Furthermore, it can be used to confirm brain death (Ducrocq et al. 1998).

Examples of situations where point-of-care ultrasound may be useful in detection of intracranial hypertension include when invasive ICP monitoring is contraindicated (such as coagulopathy), or when a patient is too unstable to be transported for diagnostic imaging. Bedside intracranial pressure measurement with ultrasound is performed by placing a high frequency linear probe on the orbit to identify the optic nerve sheath diameter (ONSD) (Figure 1). An ONSD > 5.0 mm predicts the presence of ICP > 20 mmHg with a sensitivity of 94% and specificity of 98% (Maissan et al. 2015), representing excellent diagnostic performance (area under the curve [AUC] of 0.99) (Maissan et al. 2015) (Figure 1). Serial ONSD measurements can be done to follow the progression of ICP.
hypertension may also be detected with ultrasound by measurement of blood flow velocity of the middle cerebral artery with spectral Doppler, known as transcranial colour-coded sonography (TCCS) (Lau and Arnfield 2017) (Figure 2). The pulsatility index (PI) is a Doppler-derived measure of the resistance to blood flow and is calculated as the difference between the peak systolic flow velocity and end-diastolic flow velocity, divided by the mean velocity. An elevated PI correlates with increased ICP, regardless of the nature of the intracranial pathology (Bellner et al. 2004). Typically a PI > 2.3 (normal PI value < 1.2) correlates with an ICP > 22 mmHg (Lau and Arnfield 2017). Presence of a midline shift of the cerebrum, a condition associated with ipsilateral intracranial hypertension, can also be detected by two-dimensional transcranial ultrasound. A transtemporal view of the third ventricle (Figure 3), a midline structure, is obtained and the distance to the middle of the third ventricle from the ipsilateral and contralateral edges of the cranium are measured; a discrepancy between the measured distances indicates presence of a midline shift (Denault et al. 2018).

An important caveat is that transcranial ultrasound requires an experienced operator, and even then is very difficult or impossible in up to 10% of patients (Denault et al. 2018). Detailed description of this technique is beyond the scope of this article but is well described elsewhere (Lau and Arnfield 2017; Denault et al. 2018).

Finally, it is important to perform a systematic evaluation of the encephalopathic patient, as extra-cranial causes of altered mental status are numerous, such as cerebral congestion secondary to right heart dysfunction or volume overload (Figure 4), or cerebral hypoperfusion due to various causes of shock. WHOBUS can help identify the presence of these contributing pathologic states as we will describe in the following sections.

WHOBUS in the hypoxaemic patient

The approach to the hypoxaemic critically ill patient can be greatly simplified and enhanced with the use of point-of-care ultrasound (Piette et al. 2013). Lung and pleural ultrasound, as an adjunct to the clinical exam, can readily identify important causes of hypoxia.
and respiratory distress such as pulmonary oedema, acute respiratory distress syndrome, pneumothoraces, pneumonia and pulmonary embolus.

The systematic, complete bilateral assessment of the chest allows the identification of key artefacts that are the result of the interplay between air, physiologic and pathologic tissue, pleura and fluid. When performed and interpreted correctly, the user can reach an accurate diagnosis, perhaps even obviating the need for other investigations such as chest radiography or computed tomography (Zanobetti et al. 2011; Volpicelli et al. 2008).

Numerous algorithms exist to direct users in the evaluation of the hypoxaemic patient (Figure 5), of which the BLUE protocol is probably the most well-known (Lichtenstein and Mezière 2008). The assessment begins with an examination of the anterior chest. The presence of lung sliding below the probe rules out a pneumothorax in that location. The absence of lung sliding does not enable a definitive diagnosis; however, a pneumothorax can still be ruled out by identifying a lung pulse in the pleura (fine oscillatory lung sliding from cardiac activity) or B lines, vertically projected pleural artefacts. Conclusive evidence of a pneumothorax can be identified by lung ultrasound by identification of a junction where areas of normal lung sliding and absent lung sliding meet the lung point (Zhang et al. 2006). Alveolar interstitial syndrome is identified if more than two B lines are seen in one intercostal space. Bilateral anterior B lines that have increased density in the dependent portions of the lung are characteristic of pulmonary oedema, where focal or skipped areas are more pathognomonic of pneumonitis or chronic interstitial disease respectively. A peripherally located focal lung consolidation could be a pulmonary embolus (Comert et al. 2013), which could be confirmed by detection of a deep venous thrombosis with ultrasound (Denault et al. 2018). Pleural effusion (Figure 4), consolidation and atelectasis (Lichtenstein et al. 2004) are usually found in the dependent lung regions. The volume of effusion can be estimated (Froudarakis 2008).

This modality is not without limitations, including the need for appropriate training, difficult imaging in obese patients or lung pathology that is very central with unaf-
fected pleural boundaries (Mayo et al. 2009; Denault et al. 2018). In such a situation, a transoesophageal approach can be considered (Cavayas et al. 2016). However, in conjunction with WHOBUS of other relevant organ systems as well as conventional clinical tools, the diagnostic yield remains high and will likely grow in conjunction with user expertise (Denault et al. 2018). Lung ultrasound has surpassed the popularity of transthoracic echocardiography in many centres (Yang et al. 2016). In 5 to 10% of the time, hypoxaemia will be associated with normal lung ultrasound. In those conditions, a cardiac aetiology such as intracardiac shunt (Figure 6), obstructive pulmonary diseases or acute pulmonary embolism should be suspected.

WHOBUS in the haemodynamically unstable patient

A reported method of using WHOBUS to assist in management in haemodynamic instability involves a two-step approach (Vegas et al. 2014; Denault et al. 2014b). The first is to identify the mechanism of haemodynamic instability (distributive, haemorrhagic, cardiogenic or resistive), using a combination of inferior vena cava (IVC) and hepatic venous flow (HVF) interrogation (Figure 7). The second step is to identify the aetiology.

The initial step of identification of the mechanism of shock can be determined using the concept of venous return, which was popularised by Guyton et al. (1957). Haemorrhagic and distributive shock are typically associated with reduced systemic venous pressure. Cardiogenic shock is associated with an increase in right atrial pressure. Resistance to venous return can result from an infra-diaphragmatic obstruction such as abdominal compartment syndrome or a supra-diaphragmatic obstruction such as cardiac tamponade or tension pneumothorax. The IVC will be small in compartment syndrome (Figure 8A-C) and distended in tamponade. Rarely, IVC stenosis can occur after certain procedures such as liver transplantation (Figure 8D) and will be associated with a distended IVC with reduced ventricular cavities (Hulin et al. 2016). The hepatic venous flow will remain normal in shock states associated with preserved cardiac function (Figure 7, pattern 1) but will be abnormal when right ventricular dysfunction is present (Figure 7 pattern 3). However, in cases of resistance to venous return, absent or monophasic will be observed (Figure 7 pattern 2&3) (Beaubien-Souligny et al. 2018c).

A major advantage of WHOBUS over pres-
sure and flow-based monitors is the ability of WHOBUS to be used to identify the aetiolo-

gastrointestinal bleeding and retroperitoneal bleeding are more difficult to detect. Septic shock will reduce venous systemic pressure through an increase in venous compli-
ance. Many infective causes are detectable with WHOBUS, such as pneumonia, empyema, cholecystitis, pyelonephritis, bacterial peritonitis in cirrhosis and endocarditis. Echocardiogra-

An important caveat is that two or more co-existing causes of haemodynamic instability may be present (Costachescu et al. 2002). In subarachnoid haemorrhage, myocardial depression can occur but also left ventricular outflow tract obstruction from the use of milrinone (Figure 9). In septic shock both left and right-sided myocardial depression can be present (Kimchi et al. 1984; Romero-Bermejo et al. 2011; Turner et al. 2011; Vallabhajosyula et al. 2017), which if missed, may result in excessive fluid overload (Andrews et al. 2017). As mentioned, pulmonary oedema is readily detected with WHOBUS (Beaubien-Souligny et al. 2017). Portal pulsatility (Figure 10) predicts both portal hypertension and complications after cardiac surgery (Eljaiek et al. 2018 In press), including renal failure (Beaubien-Souligny et al. 2018a).

WHOBUS in the oligo-anuric patient

The approach to the critically ill patient with an acute reduction of urine output involves multiple aspects. These include the rapid recognition of reversible causes and the accurate identification of patients who will progress to severe acute kidney injury (AKI). A blind approach consisting of administration of fluids in an attempt to increase urine output is often ill-advised as renal fluid responsiveness is absent in 50% of oliguric critically ill patients and resulting fluid overload may lead to complications (Prowle et al. 2010). Urinary sodium measurements are ineffective in identifying responders (Legrand et al. 2016).

WHOBUS may be used as an adjunct to enhance the evaluation of the oligoanuric patient. A proposed approach is presented in Figure 11. WHOBUS can not only be used to identify both presence and level of renal obstruction and urine formation, fluid responsiveness but can also be used to determine renal hypoperfusion and extra-renal haemodynamic factors contributing to renal hypoperfusion. These concepts are beyond the scope of this short article.

Kidney and bladder ultrasound are enabling clinicians to rapidly screen for the possibility
of lower or higher urinary tract obstruction. Lower urinary tract obstruction can occur frequently in critically ill patients because of urinary catheter dysfunction. Hydronephrosis may occur in the setting of urologic or other types of abdominal surgery (Narita et al. 2017) as well as retroperitoneal bleeding (Yumoto et al. 2018). After excluding urinary obstruction, Doppler ultrasound can be used to assess intra-renal blood flow velocities. Colour Doppler showing no signals in the renal parenchyma after adequate scale adjustments may offer a simple way to identify kidney hypoperfusion (Schnell and Darmon 2012; Barozzi et al. 2007; Schnell et al. 2014). The use of pulse-wave Doppler may have two applications. Arterial Doppler of the interlobar artery can identify patients with a highly abnormal resistive index (RI > 0.70). While this parameter is modified by numerous factors, a high RI has been demonstrated to be predictive of subsequent AKI or progression to severe AKI in critically ill patients and thus may be useful to identify which oliguric patients are the most concerning (Ninet et al. 2015). Venous Doppler at the level of the interlobar veins can assess whether alterations in intra-renal venous flow (periods of interrupted flow) are present (Iida et al. 2016; Nijst et al. 2017). The presence of severe alterations (venous flow present only in diastole) may suggest that venous hypertension is present and have a deleterious effect on kidney function, as it has been associated with AKI after cardiac surgery (Beaubien-Souligny et al. 2018b; 2018a).

The impact of WHOBUS

In order to explore the impact of WHOBUS, we performed a search based on a systematic review reported by Heiberg et al. (2016) with the aim of identifying the impact on diagnosis, management and outcome of POCUS in the emergency room, intensive care unit and the operating room. PubMed, MEDLINE and EMBASE electronic databases were searched using the following search terms: (“Echocardiography” OR “Ultrasonography”) OR “Heart Diseases/Ultrasonography” AND (“Perioperative Care” OR “Intensive Care” OR “Emergency Department”) AND (“Humans”). The references of each publication were searched for eligible publications. The search was restricted to peer-reviewed, original research, including prospective, retrospective cohort, case–control and cross-sectional studies, but excluded systematic reviews, case reports, non-English language publications, studies published before 1 January 1995 or publications without the full text being available. Participants were
humans aged at least 18 years. The intervention was focused echocardiography, lung ultrasound, abdominal ultrasound or deep venous thrombosis ultrasound performed either before, during or after non-cardiac surgery or in a critical care or emergency medicine setting. Outcomes included changes in clinical diagnosis, management, cardiac complications and death. For each individual publication, an outcome-level assessment of bias was performed that included the following parameters: patient selection, sonographer expertise, indication for surgery and indication for ultrasound. This bias assessment was considered in the synthesis of the result, but no scoring system was used. The impact on diagnosis, management and outcome of ultrasound of 2,020 patients are summarised in Table 1. Most studies were observational studies with few, randomised controlled trials. Changes in management and diagnosis range from 8% to 78%. Many of these studies have limited the use of ultrasound to the chest or the abdomen. There is a paucity of studies investigating whether an approach guided by ultrasound improves clinical outcomes. Consequently, there is an unmet need to design pragmatic trials to address these questions.

Conclusion
The clinical uses of ultrasound in critical care are increasing. Whole-body ultrasound is becoming a routine and useful tool for the critical care physician and is becoming incorporated into critical care training (Diaz-Gomez et al. 2017).

Conflict of interest
André Denault is on Speakers Bureau for CAE Healthcare and Masimo.

Abbreviations
AKI acute kidney injury
HVF hepatic venous flow
ICP intracranial pressure
ICU intensive care unit
IVC inferior vena cava
ONSD optic nerve sheath diameter
PI pulsatility index
POCUS point-of-care ultrasound
TCCS transcranial colour-coded sonography
WHOBUS whole-body ultrasound

References
For full references, please email editorial@icumanagement.org or visit https://iii.hm/qp2
Table 1. Impact of point-of-care focus cardiac ultrasound (FCU) on diagnosis, management and outcome of patients in the anaesthesia and intensive care setting

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Methodology</th>
<th>Ultrasound operator</th>
<th>Cohort</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency department and pre-hospital setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breitkreuz 2010</td>
<td>Randomised controlled trial</td>
<td>Emergency physicians</td>
<td>204 patients undergoing cardiopulmonary resuscitation (100) or in shock (104)</td>
<td>In 35% of those with an electrocardiographic (ECG) diagnosis of asystole, and 58% of those with pulseless electrical activity, coordinated cardiac motion was detected, and associated with increased survival. Electrocardiographic findings altered management in 78% of cases. FCU identified mechanical ventricular activity in 78% (i.e. not pulseless electrical activity but shock) in whom FCU identified pericardial effusion in 14% and hypoxaemia in 22%. Return of spontaneous circulation occurred in 43% of patients where mechanical ventricular activity was identified with FCU. No patients had return of spontaneous circulation where FCU identified no mechanical ventricular activity. Among patients who did not receive FCU, no reversible etiology was detected. However, there was no significant difference in resuscitation results between groups (p = 0.52).</td>
</tr>
<tr>
<td>Chardoli 2012</td>
<td>Randomised controlled trial</td>
<td>Emergency physician residents</td>
<td>100 patients with out-of-hospital cardiac arrest requiring cardiopulmonary resuscitation with initial diagnosis of pulseless electrical activity. 50 randomised to FCU and 50 controls</td>
<td>FCU identified mechanical ventricular activity in 78% (i.e. not pulseless electrical activity but shock) in whom FCU identified pericardial effusion in 14% and hypoxaemia in 22%. Return of spontaneous circulation occurred in 43% of patients where mechanical ventricular activity was identified with FCU. No patients had return of spontaneous circulation where FCU identified no mechanical ventricular activity. Among patients who did not receive FCU, no reversible etiology was detected. However, there was no significant difference in resuscitation results between groups (p = 0.52).</td>
</tr>
<tr>
<td>Levitt 2002</td>
<td>Prospective observational study</td>
<td>Cardiac sonographers</td>
<td>83 patients admitted with either chest pain, dyspnoea (38) or unexplained syncope or fatigue of whom 88 received FCU on admission and 15 received FCU 15-30 minutes after admission</td>
<td>There was a change in diagnosis in 45%, a change in management in 39%, and a change in disposition in 13% of patients.</td>
</tr>
<tr>
<td>Jones 2004</td>
<td>Randomised controlled trial</td>
<td>Attending emergency physicians</td>
<td>188 patients with nontraumatic hypotension and symptoms of shock (e.g. syncope, dyspnoea, unexplained syncope or fatigue) of whom 88 received FCU on admission and 15 received FCU 15-30 minutes after admission</td>
<td>Early FCU increased the likelihood of detecting the correct diagnosis of hypotension from 50% to 89%.</td>
</tr>
<tr>
<td>Anaesthesia setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canty 2009</td>
<td>Prospective observational</td>
<td>Anaesthesiologists</td>
<td>87 patients undergoing non-cardiac surgery (preoperative, intraoperative and postoperative) received FCU when transthoracic echocardiography (TTE) was requested by the attending anaesthesiologist</td>
<td>FCU changed medical management in 34% (haemodynamic management, anaesthetic technique, and postoperative care) and surgical management in 7% (surgery altered in 2% and deferred in 5%).</td>
</tr>
<tr>
<td>Cowie 2011</td>
<td>Prospective non-comparative observational</td>
<td>Anaesthesiologists</td>
<td>170 patients scheduled for elective or non-elective surgery with either haemodynamic instability, undifferentiated murmur or valve disease, suspected ventricular dysfunction, dyspnoea or hypoaemia, poor functional capacity, suspected pulmonary hypertension or dysrythmia</td>
<td>FCU changed management in 82% of patients (same changes as above).</td>
</tr>
<tr>
<td>Canty 2012a</td>
<td>Prospective non-comparative observational</td>
<td>Anaesthesiologists</td>
<td>100 patients scheduled for elective non-cardiac, non-minor surgery who were referred for preoperative assessment by an anaesthesiologist in the preoperative clinic where the anaesthesiologist suspected significant cardiac disease or patient age≥65 years</td>
<td>FCU changed management in 54% including changed surgery in 2%. Changes included a step up in treatment in 36% (delay surgery for cardiology assessment), intraoperative invasive monitoring and vasopressor infusion, postoperative intensive care unit (ICU) and a step down in treatment in 8% (circumvented the need for invasive monitoring, vasopressor infusion, postoperative ICU admission).</td>
</tr>
<tr>
<td>Canty 2012c</td>
<td>Prospective non-comparative observational</td>
<td>Anaesthesiologists</td>
<td>99 patients scheduled for urgent (non-elective surgery) where the attending anaesthesiologist suspected significant cardiac disease or patient age≥65 years</td>
<td>FCU changed diagnosis in 67% and changed management in 64% including changed surgery in 2%. Changes included a step up in treatment in 28% and a step down in treatment in 34% (same changes as above).</td>
</tr>
<tr>
<td>Botker 2014</td>
<td>Prospective non-comparative observational</td>
<td>Anaesthesiologist</td>
<td>112 patients scheduled for urgent (non-elective) non-cardiac surgery who were screened with FCU before surgery</td>
<td>FCU changed the diagnosis in 17% and changed management in 12%.</td>
</tr>
<tr>
<td>Intensive care setting – screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manasia 2005</td>
<td>Prospective non-comparative observational</td>
<td>Intensivists who received brief training and FCU checked by cardiac sonographers</td>
<td>90 patients admitted to intensive care after non-cardiac surgery and cardiac surgery</td>
<td>FCU changed diagnosis in 84% and changed management in 37%. FCU imaging was diagnostic in 94% and interpreted correctly in 84%.</td>
</tr>
<tr>
<td>Stanko 2005</td>
<td>Prospective non-comparative observational</td>
<td>Cardiac sonographers</td>
<td>90 patients admitted to intensive care after non-cardiac surgery and cardiac surgery</td>
<td>FCU led to changed management in 41% of patients. Major changes occurred in 8% (surgery changes or other new active treatment) and minor changes in 9% (medication changes or referral).</td>
</tr>
<tr>
<td>Marcelino 2008</td>
<td>Prospective non-comparative observational</td>
<td>Intensivists</td>
<td>704 patients admitted to intensive care received FCU</td>
<td>FCU revealed abnormal findings in 33%, of which 7.5% were severe.</td>
</tr>
<tr>
<td>Christiansen 2013</td>
<td>Prospective non-comparative observational</td>
<td>Intensivists</td>
<td>80 patients received FCU and lung ultrasound 1 day after open aortic valve replacement</td>
<td>FCU and lung ultrasound changed the diagnosis of pericardial and pleural effusion in 15% of patients.</td>
</tr>
<tr>
<td>Intensive care setting – FCU indicated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joseph 2004</td>
<td>Prospective non-comparative observational</td>
<td>Cardiac sonographers</td>
<td>100 patients admitted to intensive care with shock (systolic blood pressure < 100 mmHg or fall in systolic blood pressure of ≥25% and inotrope use or evidence of low output or pulmonary venous congestion) received FCU</td>
<td>Cardiac cause of shock was identified by FCU in 63%. FCU resulted in a change in management in 31%, including 29% medical therapy changes and 22% procedural changes (surgery 12%, pericardiocenteses 4%, intra-aortic balloon pump 4%, thrombolysis 2%, angioplasty 1%).</td>
</tr>
<tr>
<td>Orme 2009</td>
<td>Prospective non-comparative observational</td>
<td>Intensivists</td>
<td>187 patients admitted to intensive care after non-cardiac surgery. Indications included LV and RV assessment, infective endocarditis, pericardial effusion, and pulmonary oedema.</td>
<td>FCU led to a change in management in 51% of patients and included changes to fluid administration, inotrope or drug therapy, and treatment limitation. The main impact was in haemodynamically unstable patients. Diagnostic images were obtained in 91.3% of spontaneously breathing and 84.2% of mechanically ventilated patients.</td>
</tr>
<tr>
<td>Impact of FCU on outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plummer 1992</td>
<td>Retrospective comparative cohort study</td>
<td>Emergency physicians</td>
<td>49 patients admitted to the Emergency Department with penetrating cardiac injury of whom 28 received FCU on arrival and 21 did not</td>
<td>In patients who received FCU there was greater survival (100% vs 57.1%, p < 0.01), Glasgow Outcome Score (5.0 vs 4.2, p < 0.007) and a shorter time to diagnosis and disposition for surgical intervention (15.5 ± 11.4 vs 42.4 ± 21.7 minutes, p < 0.001).</td>
</tr>
</tbody>
</table>

Echocardiographic findings altered management in 78% of cases. Return of spontaneous circulation occurred in 43% of patients where mechanical ventricular activity was identified with FCU. No patients had return of spontaneous circulation where FCU identified no mechanical ventricular activity. Among patients who did not receive FCU, no reversible etiology was detected. However, there was no significant difference in resuscitation results between groups (p = 0.52).
Impact of lung ultrasound or and FCU on diagnosis and management

Ultrasound screening

Christiansen 2013 Prospective non-comparative observational Intensivists 80 patients received FCU and lung ultrasound 1 day after open aortic valve replacement
FCU and lung ultrasound (LUS) changed the diagnosis of pericardial and pleural effusion in 51% of patients.

Alsaddique 2016 Prospective non-comparative observational Cardiac sonographers 91 patients received FCU and lung ultrasound 1 day after cardiac surgery requiring median sternotomy
FCU and/or LUS changed the diagnosis of important cardiac and/or respiratory disorders in 67% including cardiac dysfunction (42%), pericardial effusion (9%), mitral regurgitation (2%), hypoaemia (1%), pleural effusion (33%), pneumothorax (4%), alveolar interstitial state (3%) and pneumonia (1%).

Ford 2017 Prospective non-comparative observational Medical students with images reviewed by a surgeon 78 patients undergoing cardiac or thoracic surgery received lung ultrasound and chest radiography either before (62 patients) or after (16 patients) surgery (not in intensive care) LUS identified lung pathology that was missed by clinical assessment and chest x-ray in 20% of patients. Lung ultrasound detected lung pathology in 10 of 42 (24%) patients before surgery in the preoperative clinic and in 34 of 36 (94%) patients after surgery.

Haji 2018 Prospective non-comparative observational Intensivists 93 patients admitted within <24h to intensive care received FCU and lung ultrasound Haemodynamic diagnosis was altered in 64% of patients, including new (14%) or altered (25%) abnormal haemodynamic states or exclusion of clinically diagnosed abnormal haemodynamic state (27%). Valve pathology of at least moderate severity was diagnosed for mitral regurgitation (7%), aortic stenosis (1%), aortic stenosis and mitral regurgitation (1%), tricuspid regurgitation (3%), and 1 case of mitral regurgitation was excluded. Management changed in 65% of patients including increased (12%) or decreased (23%) fluid therapy, and initiation (10%), changing (6%) or cessation (9%) of inotropic, vasoactive or diuretic drugs.

Ultrasound indicated

Silva 2013 Prospective non-comparative observational Intensivists 78 patients admitted to intensive care with acute respiratory failure received FCU, lung and deep venous thrombosis (IVT) ultrasound
Ultrasound was more accurate than standard assessment (83% vs 63%, p=0.02) resulting in a change in diagnosis of 20%. Receiver operating characteristic curve (ROC) analysis showed greater diagnostic performance of ultrasound than standard approach in pneumonia (0.74±0.12 vs 0.87±0.14, p=0.02), acute haemodynamic pulmonary oedema (0.79±0.11 vs 0.93±0.08, p=0.005), decompensated chronic obstructive pulmonary disease (0.8 vs 0.92±0.15, p=0.05), and pulmonary embolism (0.81±0.17 vs 0.45±0.12, p=0.04).

Batalia 2014 Prospective non-comparative observational study Intensivists 136 patients admitted to intensive care with acute respiratory failure received FCU and lung ultrasound
The diagnostic accuracy of combined FCU and lung ultrasound was greater than lung ultrasound alone (p=0.05). Comparisons between ROC curves showed that combined FCU and lung ultrasound improves the diagnosis of acute haemodynamic pulmonary oedema (p=0.001), pneumonia (p=0.001), and pulmonary embolism (p=0.001).

Xireuchaki 2014 Prospective non-comparative observational study Intensivists 253 patients admitted to the intensive care unit (108 in patients with unexplained hypoxaemia and 145 with suspected lung pathology) received lung ultrasound
LUS changed the diagnosis in 86% and changed the management in 47%, consisting of invasive interventions (chest tube, bronchoscopy, diagnostic thoracentesis/flush drainage, continuous venous-venous haemofiltration, abdominal decannulation and tracheotomy) in 32% and noninvasive interventions (positive end-expiratory or PEEP change/titration, recruitment manoeuvre, diuretics, physiotherapy, change in bed position, antibiotics initiation/change in 15%.

Zanobetti 2017 Prospective non-comparative observational study Emergency physicians 2,683 patients admitted to the Emergency Department with dyspnea received FCU and lung ultrasound
Average time to diagnosis was lower in patients who received ultrasound compared to those who received standard evaluation without ultrasound (24±10 min vs 18±7 min, p=0.02). The diagnostic accuracy was similar for acute coronary syndromes, pneumonia, pleural effusion, pericardial effusion, pneumothorax, and dyspnea from other causes. Ultrasound was more accurate in diagnosis of heart failure and standard evaluation was more accurate in the diagnosis of chronic obstructive pulmonary disease/asthma and pulmonary embolism.

Impact of lung ultrasound or and FCU on outcome

Laursen 2014 Randomised controlled trial Respiratory physician 317 patients admitted to the Emergency Department with persistent hypoxaemia in whom 134 received point-of-care ultrasound (FCU, lung and abdomen) and 134 controls who did not receive point-of-care ultrasound
Patients receiving ultrasound had a higher proportion of correct presumptive diagnosis at 4 hours after admission (88.0% vs 82.8-93.3%, p=0.03). The diagnostic accuracy was similar for half of the patients was occult sepsis. There was no difference between groups for the primary outcome of 30-day survival (point-of-care ultrasonography group 104 of 134 patients versus standard care 102 of 134 patients; difference 0.3%, 95% binomial confidence interval [CI] =-10.2% to 11.0%), survival in North America (point-of-care ultrasonography group 76 of 89 patients versus standard care 72 of 89 patients; difference 3.6%, CI =-8.1% to 15.9%), and survival in South Africa (point-of-care ultrasonography group 28 of 67 patients versus standard care 26 of 67 patients; difference 12.1%, CI =-15.2% to 29.6%). There were no important differences in rates of computed tomography (CT) scanning, inotropes or intravenous fluid use, and ICU or total length of stay.