You are Cordially Invited to Our Scientific Symposium at Euroanaesthesia 2016 in London

The Future of Noninvasive Monitoring:
Optimizing Fluid, Blood and Oxygen

Interactive Session, please ask any questions to our Faculty now! For more information, please stop by Masimo, Stand G10. Register and ask your questions at www.masimo.com/thefuture

High-Risk Surgical Patients: Oxygen Delivery and Hemodynamic Strategies
Jean-Louis Vincent, MD, PhD
Professor of Intensive Care Medicine (Université Libre de Bruxelles)
Department of Intensive Care, Erasme University Hospital
President, World Federation of Intensive and Critical Care Societies (WFSICCM)

Oxygen Reserve Index (ORI™): Validation and Application of a New Variable
Thomas W.L. Scheeren, MD, PhD
Professor of Anaesthesiology, Head Cardiothoracic Anaesthesia
Department of Anaesthesiology, University Medical Center Groningen
Groningen, The Netherlands

Oxygen Delivery (DO2): An Oversimplified Concept?
Azriel Perel, MD
Professor of Anesthesiology and Intensive Care
Sheba Medical Center, Tel Aviv University
Tel Aviv, Israel

Location:
N Hall 5, ExCel Congress Center, London

Date and Time:
Sunday May 29th • 12:15pm - 1:45pm

Lunch will be provided

Chairperson:
Prof. Jean-Louis Vincent

Please register at www.masimo.com/thefuture

Space is Limited
RSVP Required

PLCO-000069/PLLT-10056A-0416
SAFE TRANSPORT OF CRITICALLY ILL PATIENTS

The transport of critically ill patients for diagnostic or therapeutic procedures carries a particular risk and requires therefore a careful risk-benefit assessment. Transport-related risks can be reduced by increased awareness and education, adequate staffing, proper choice and handling of equipment and the use of error-preventive tools like checklists.

An important question concerns the composition of the transport team. While it seems intuitively most likely that a dedicated transport team should be advantageous there are few data supporting this assumption. In a Scottish study on interhospital transfers of acutely ill patients the incidence of unsecured medical equipment and equipment failures in ventilated patients was significantly lower in dedicated transport teams (Fried et al. 2010). Obviously ventilated patients are to be considered as a group with increased risk during any kind of transport and a clear demand for skilled accompanying medical staff. To illustrate this point an example of a patient with decreasing oxygen saturation who has to be transported is given.

The transport of critically ill patients is an event involving many potential for patient harm and ultimately by the lack of senior staff.

Risk Assessment and Safety Status of Transports

Although the number of publications in this field is increasing it remains difficult to come up with representative numbers. The reasons for this difficulty consist of different definitions of error, different types of transport (e.g. intrahospital and interhospital), and very frequently the missing information about the number of opportunities for error and the actual error (numerator and denominator). In a study on 184 mechanically ventilated ICU patients requiring 262 transports for CT, 26% of transports were associated with an adverse event affecting the patient (Parmentier-Decruy et al. 2013). Interhospital transports carry a particular risk regarding the safe functioning of transport equipment. In a Dutch study involving 353 interhospital transports, 55 technical problems were encountered, ranging from problems with the gas supply and electricity to problems with the medical equipment and the trolleys, as well as with some functions of the ambulance car. Although there was only little impact on patient status, these problems led to delays or even cancellation of patient transports. In any case this study highlights the particular dependence on technical equipment during a period when the relatively safe environment of a hospital is left with a critically ill patient on board (Droogh et al. 2012).

Patient safety is not only a matter for the transport period; a transport might impact the patient status beyond arrival on or return to the ICU. In a French study it was shown that intrahospital transport increases the risk for complications in ventilated critically ill patients. Patients exposed to a transport had a higher risk for various complications including pneumonia, atelectasis, ventilator-associated pneumonia, hypoglycaemia, hyperglycaemia, and hypernatraemia (Schwebel et al. 2013). The latter findings illustrate that the interruption of critical care processes like the continuous administration of medication might lead to pathophysiological derangements if no proper and time-sensitive adaption is performed.

What is a Safe Transport?

In an abstract perspective a safe transport would be defined by the absence of error with the potential for patient harm and ultimately by the absence of adverse events. In a more pragmatic approach a safe transport could be described by several aims like "patient arrives at least in the same condition as at departure", "no transport-related physiological deterioration", "absence of critical events", "no equipment failure" and so on. Indeed, the opportunities for transport-related errors and events are numerous. To illustrate a few, a pathophysiologoical deterioration might arise from the displacement of lines or drains, the loss of airway in a ventilated patient, a less sophisticated monitoring or treatment during transport (e.g. a more simple mode of ventilation), additionally movements (e.g. lifting of a patient) or exposure to altered environmental conditions (temperature, altitude, acceleration), as well as limited diagnostic and therapeutic resources during transport frequently characterised by the lack of senior staff.

The transport of critically ill patients for diagnostic or therapeutic procedures carries a particular risk and requires therefore a careful risk-benefit assessment. Transport-related risks can be reduced by increased awareness and education, adequate staffing, proper choice and handling of equipment and the use of error-preventive tools like checklists.

The fastest route and means of transport will not always provide the best risk to benefit ratio for a patient.
might be helpful. The causes for a decreasing oxygen saturation might be trivial like the loss of the signal due to the displacement of the oxygen sensor, but could also be attributed to a life-threatening event like airway obstruction or pneumothorax, as well as technical problems like the breakdown of gas supply or defect hoses and valves, just to mention a few. It goes without saying that the fast and accurate workup and solution of this event will be much more challenging with a patient on the move, either on the street or in the air.

How to Minimise Transport-Associated Risks for Patients?

Assessment of the Patient & Decision for Transport

Considering the risks associated with the transport of critically ill patients the first principle must be "avoid any unnecessary transport" and ask the question "will this transport likely result in findings or procedures that will ultimately benefit this patient?". Table 1 summarises the questions to be answered before any transport. Most importantly a careful assessment of the patient status must be performed before a final decision is reached to transport the patient (Fig. 1).

Setting & Equipment

As elaborated above the choice, maintenance and proper handling of equipment is a crucial factor in preventing critical events during transport. One of the paradigms in safety research is about system design and the risk of an environment and equipment that might rather promote than prevent the occurrence of error. It is therefore of uppermost importance to choose transport equipment that is built with a user-friendly and error-mitigating design. The user-machine interface makes a difference, as has been shown in a study on different types of transport ventilators (Templier et al. 2007). For intrahospital transports the ICU equipment already in use in a particular patient should be used as much as possible for the transport as well. There are many ICU ventilators available that will be applicable during transport, for example. Alternatively some transport ventilators will provide the exact similar ventilator mode as used with a particular ICU ventilator.

The placement of equipment during a transport should allow unhindered access to the patient, while at the same time patient safety must not be compromised by an insecurely stowed monitor, ventilator, perfusion pump etc. In most cases equipment is best mounted at or below the level of the patient, but the display of the monitor, ventilator and other devices must be visible and alarms should be as audible as possible.

At least for gas supply and power supply redundancy must be a principle. Calculations must consider unplanned delays during a transport and other scenarios like a higher demand for oxygen in a deteriorating patient.

Staffing

If we agree with the principle that the safety profile of a transport of a critically ill patient should resemble the conditions of an ICU as closely as possible then an intensive care physician or an emergency physician and at least one intensive care trained nurse are required for this transport. Depending on the character of the transport and the number of medical staff additional personnel like porters might be necessary.

Table 1. Questions to be Answered Before Patient Transport

<table>
<thead>
<tr>
<th>Question</th>
<th>Domain</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the aim of the transport?</td>
<td>Organisation</td>
<td>ICU Physician</td>
</tr>
<tr>
<td>Will the results have clinical consequences?</td>
<td>Medical Decision</td>
<td>ICU Physician</td>
</tr>
<tr>
<td>Will the expected benefit outweigh the risks?</td>
<td>Risk Assessment</td>
<td>ICU Team</td>
</tr>
<tr>
<td>Is the patient stable enough? (see Fig. 1)</td>
<td>Medical Decision</td>
<td>ICU Physician</td>
</tr>
<tr>
<td>Is it the right point in time?</td>
<td>Organisation</td>
<td>ICU Team ICU Physician</td>
</tr>
</tbody>
</table>

Is the patient stable enough?

<table>
<thead>
<tr>
<th>Ventilation</th>
<th>Circulation</th>
<th>Neurology</th>
<th>Trauma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway secured</td>
<td>HR, BP stable</td>
<td>Adequate sedation</td>
<td>C-spine protected</td>
</tr>
<tr>
<td>Tracheal tube position confirmed</td>
<td>Blood loss controlled</td>
<td>Seizures drained</td>
<td>Pneumothorax drained</td>
</tr>
<tr>
<td>Both lungs ventilated</td>
<td>Volume status appropriate</td>
<td>ICP managed</td>
<td>Fractures stabilized</td>
</tr>
<tr>
<td>Adequate gas exchange</td>
<td>2 routes of iv access</td>
<td></td>
<td>Bleeding controlled</td>
</tr>
</tbody>
</table>

Figure 1

Route & Means of Transport

The choice of route and the means of transports depend on several criteria like geographic circumstances and weather conditions (interhospital) or local structures (intrahospital). But first of all the patient’s status of urgency and stability is the determining factor. Of note, the fastest route and means of transport will not always provide the best risk to benefit ratio for a patient.

Handover

Information transfer and the loss of significant information during medical processes are a major challenge in healthcare. This is particularly true for critically ill patients undergoing interhospital transports. A comprehensive medical report from the transferring ICU and a report from the transport team are essential tools to ensure continuity of care and avoid loss of relevant clinical information.
Checklists

Many of the issues elaborated above can be in part addressed by the use of checklists. The assessment of a patient before transport and the review of transport equipment are good examples. It has been shown that the use of checklists is associated with a reduction of incidents during the transport of critically ill patients (Bérubé et al. 2013). Other authors have published very useful checklists for the preparation and realisation of transports that can be considered as part of a programme to enhance patient safety (Fanara et al. 2010; Brunsveld-Reinders et al. 2015).

References


A comprehensive method to develop a checklist to increase safety of intra-hospital transport of critically ill patients. Crit Care, 14(3): R87.


Conflict of Interest

Andreas Valentin confirms that he has no affiliations or involvement in any organisation or entity with any financial interest in the subject matter or materials discussed in this manuscript.

Patient Safety and Social Media

Patient Safety represents a group of healthcare staff focused on introducing effective and sustainable healthcare solutions. ICU Management & Practice emailed the team to find out more about their Twitter account and blog.

Your Twitter strapline is “Front Line Staff Implementing Effective Safety Solutions” Who’s behind patientsafe?

Patientsafe started as a small group of three critical care subspecialty doctors. Our group has gradually grown to incorporate several frontline staff—doctors, nurses, and technicians. We collaborate closely with leaders from several healthcare backgrounds.

We have a particular focus on patient safety from the human factors perspective. We believe this is an untapped and poorly understood field that could be of great benefit in reducing adverse events. We have all witnessed avoidable adverse events and are driven to prevent them recurring.

We would like to note the influence of Dr Terry Fairbanks (human factors) and Dr Ronald Hefetz (adaptive leadership) as having particular impact on our work.

How can social media help to bring patient safety “front of mind” to healthcare staff? Our posts have two overall themes:

• The human factors approach to patient safety;

• Specific hazards that exist in the workplace. Social media has enabled us to connect with numerous individuals and groups who share a similar interest. With their feedback they have in turn helped polish our work, which is continually evolving.

Why a blog about patient safety?

We have been bestowed with the knowledge that patient safety could and should be much better. Unfortunately with existing safety frameworks this can feel like a curse.

The continued presence of obvious hazards in the workplace enlightens us to the difficulties in improving patient safety systems.

Can you share any success stories where you have helped make a difference to patient safety?

We have had some success in removing hazards from individual hospitals, particularly Adjustable Pressure Limiting (APL) valves and almost colourless antiseptic solutions. We have exposed the difficulties in removing these from all healthcare workplaces using current safety systems.

We are aware that some hospitals have removed central line management to reduce air emboli.

We have discovered a central line that does not open to air and await Therapeutic Goods Administration (Australia) approval prior to trialling it.

We have developed a Hazard Feedback Framework (https://iliih.mh/32m), which we believe may be used by any frontline staff member in developing a proposed solution to a safety hazard. Through its use we hope staff will become better educated about the human factors approach to healthcare safety, while helping to remove identified hazards from their workplace.

There are several specific safety hazards that we continue to work on, including:

• Ensuring immediate availability to adequate doses of Sugammadex in operating theatres;

• Central line management to reduce air embolus risk;

• Use of laryngoscopes that allow simultaneous video and direct laryngoscopy as first line for intubation.

• Replacement of forced air warmers with active warming blankets where appropriate.

We are always learning. We recognise that all healthcare staff are dedicated to patient safety and providing optimal outcomes. We would like to help in generating an environment which allows this to happen.

©For personal and private use only. Reproduction must be permitted by the copyright holder. Email to copyright@mindbyte.eu.