You are Cordially Invited to Our Scientific Symposium at Euroanaesthesia 2016 in London

The Future of Noninvasive Monitoring:
Optimizing Fluid, Blood and Oxygen
Interactive Session, please ask any questions to our Faculty now! For more information, please stop by Masimo, Stand G10. Register and ask your questions at www.masimo.com/thefuture

High-Risk Surgical Patients: Oxygen Delivery and Hemodynamic Strategies
Jean-Louis Vincent, MD, PhD
Professor of Intensive Care Medicine (Université Libre de Bruxelles)
Department of Intensive Care, Erasme University Hospital
President, World Federation of Intensive and Critical Care Societies (WFSICCM)

Oxygen Reserve Index (ORI™): Validation and Application of a New Variable
Thomas W.L. Scheeren, MD, PhD
Professor of Anaesthesiology, Head Cardiothoracic Anaesthesia
Department of Anaesthesiology, University Medical Center Groningen
Groningen, The Netherlands

Oxygen Delivery (DO2): An Oversimplified Concept?
Azriel Perel, MD
Professor of Anesthesiology and Intensive Care
Sheba Medical Center, Tel Aviv University
Tel Aviv, Israel

Location:
N Hall 5, ExCel Congress Center, London
Date and Time:
Sunday May 29th • 12:15pm - 1:45pm
Lunch will be provided
Chairperson:
Prof. Jean-Louis Vincent
Please register at www.masimo.com/thefuture

PLUS
Biomarkers for Acute Kidney Injury
Early Diagnosis and Prediction of AKI
Robots in Anaesthesia
Perioperative Respiratory Management of Morbidly Obese Patients

Chain of Survival after Out-of-Hospital Cardiac Arrest
Potential Nutritional Strategies to Reduce Muscle Wasting in Early Critical Illness
The Future of ICU Prediction Scores in the Era of "Big Data"

Vodcasting
Podcasting
Resource Allocation in Healthcare
Interview: Prof. Sharon Einav, European Society of Anaesthesiology
Country Focus: Sri Lanka

Visit us at #ESALondon C140
POTENTIAL NUTRITIONAL STRATEGIES TO REDUCE MUSCLE WASTING IN EARLY CRITICAL ILLNESS

This review will briefly discuss the potential role of nutrition and the schedule of delivery on reducing skeletal muscle wasting in early critical illness.

Increasing numbers of patients are surviving critical illness due to treatment advances in the early management of acutely unwell patients. This survival advantage is reflected as an increase in the number of patients experiencing long-term functional disability post-critical illness (Cheung et al. 2006; Herridge et al. 2011; Hopkins et al. 2005; Iwashyna et al. 2010), resulting in a higher frequency of discharges from hospital to rehabilitation facilities (Kaukonen et al. 2014).

Skeletal muscle weakness, termed ICU-acquired weakness (ICU-AW), contributes significantly to the physical and functional disability observed in these patients. This has been highlighted in the recent American Thoracic Society Consensus Statement (Fan et al. 2014), and skeletal muscle wasting has been identified as a contributing factor to ICU-AW (Puthucheary et al. 2010).

Interventions to reduce skeletal muscle wasting in critical illness are therefore urgently required and have been highlighted as recent research priorities in the United Kingdom (Reay et al. 2014).

Skeletal Muscle Wasting in Critical Illness

Although the pathogenesis remains poorly understood, translational data is emerging that has defined the trajectory of skeletal muscle wasting during the first week of critical illness. The MUSCLE-UK group has shown that muscle wasting occurs early and rapidly during the first week of critical illness, and is more severe in patients with multi-organ failure (Puthucheary et al. 2013). This study used muscle ultrasound of the rectus femoris cross-sectional area along with fibre cross-section from biopsies of the vastus lateralis muscle to confirm these findings. Furthermore, using leg protein turnover, they demonstrated that patients remain in a net catabolic balance at the end of the first week of critical illness as a consequence of persistently high levels of muscle protein breakdown and decreased muscle protein synthesis.

Potential Interventions

In health, skeletal muscle is maintained by a balance of muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Any prolonged change in this balance will result in an increase or decrease in skeletal muscle (Morton et al. 2015). Resistance exercise is the most potent anabolic stimulus, including during bed rest (Ferrando et al. 1997; Fitts et al. 2007), and the dose, source and timing of protein ingestion can further influence gains in skeletal muscle in those undertaking this type of exercise (Adherton et al 2010; Bohe et al. 2001; Bohe et al. 2003).

It has been assumed that similar strategies may prove useful in the critically ill. However, resistance exercise is often not feasible in the early stages of critical illness due to the clinical instability of the patient. Additionally, there are no proven nutritional therapies to attenuate skeletal muscle wasting in the ICU and translational science in this area is severely lacking (Bear et al. 2013). When considering nutritional strategies to reduce muscle wasting in the critically ill, one must consider the timing, route of delivery and the amount of nutrient required to elicit a benefit. Each of these factors remains under debate for almost all areas of critical care nutrition.

Protein

Protein is the most obvious potential nutrient to reduce muscle wasting in this population, but data indicating a clear benefit to higher protein levels are lacking. Indeed a systematic review of protein provision in critical illness detailed the limited amount and poor quality of the available evidence and highlighted several shortcomings of studies investigating protein intakes in critically ill patients (Hoffer and Bistrian 2012).

The majority of randomised controlled trials (RCTs) investigating protein intake in critical illness were undertaken before 2000 (Greig et al. 1987; Iapichino et al. 1988; Ishibashi et al. 1998; Larsson et al. 1990; Long et al. 1976; Muller et al. 1995; Pirkanen et al. 1991; Shaw et al. 1987; Twyman et al. 1985; Wolfe et al. 1983), with very few undertaken after that time (Scheinkestel et al. 2003a; Scheinkestel et al. 2003b; Singer et al. 2007; Verbruggen et al. 2011). Protein doses of up to 3.5g/kg were studied and nearly all of these used parenteral...
amino acids and reported nitrogen balance as the primary determinant of benefit from higher protein intakes. Notwithstanding the limitations of small sample size, the method of using whole body nitrogen balance is often flawed in the critically unwell due to the failure to account for losses in skin and faeces (Kopple 1987). Additionally, this method is not reflective of muscle mass, as the gastrointestinal and liver contributions remain unknown and are potentially high (Guillet et al. 2004). Whilst two studies measured protein turnover (Wolfe et al. 1983; Verbruggen et al. 2011), this was in fact whole body turnover, which also does not reflect muscle turnover itself.

Despite the lack of data from RCTs, current recommendations in the critically ill are for higher protein intakes ranging from 1.5–2.5g/kg/day (Hoffer and Bistrian 2012; Kreymann et al. 2006; McClave et al. 2016). These recommendations are based mainly on observational data and relate to a mortality benefit (Alberda et al. 2009; Allingstrup et al. 2012; Elke et al. 2014; Weis et al. 2012; Weis et al. 2014) rather than a reduction in the loss of lean body mass itself.

Only one study has investigated the effect of different protein intakes on patient-centred outcomes, including muscle wasting, in the critically ill. In the study by Ferrie and colleagues (2015), 119 patients were randomised to receive 0.8g/kg or 1.2g/kg protein from parenteral nutrition (PN). Despite a smaller than planned difference in the delivery of protein (0.9g/kg vs 1.1g/kg), they found a significant difference in the primary outcome of handgrip strength at day 7 along with improvements in secondary outcomes such as fatigue score and measures of forearm muscle thickness and rectus femoris cross-sectional area. These results indicate that higher protein intakes, at least when supplied via the parenteral route, may lead to reductions in muscle wasting during the first week of critical illness. However, this finding needs to be confirmed in larger studies, correcting for baseline heterogeneity, especially as these results are in stark contrast to observational data reported from two groups.

In two pre-planned sub-studies from the large EPaNIC Trial, early parenteral nutrition (PN) (and therefore higher provision of protein) was not found to reduce muscle wasting (Casaer et al. 2013; Hermans et al. 2013). In the first of these (Hermans et al. 2013), muscle atrophy, measured using muscle biopsies, was not different between the groups receiving early or late PN. In the second, repeated femoral and abdominal CT scans were obtained in 15 neurosurgical patients. Whilst early PN was shown to reduce the quality of the muscle, it did not affect the rates of wasting seen in this group of patients.

Puthucheary et al. (2013) used muscle ultrasound of the rectus femoris cross-sectional area to inform the trajectory of muscle wasting over a 10-day ICU stay in 63 patients. Muscle loss in this group was early and rapid, with patients losing on average 17% of their lean body mass over this time period. Additionally, patients with multi-organ failure experienced significantly more muscle loss than those patients with single organ failure (21.5% vs. 7.2%). This finding was confirmed by the data from muscle biopsies of the vastus lateralis. Protein tracer studies indicated that the muscle loss was due to increased protein catabolism and not reflect muscle turnover itself.

Reduced protein synthesis over the first 7 days; however, muscle loss in this group was also found to be positively associated with protein intake over the study period.

These studies indicate that simply reducing the macronutrient deficit over the first week of critical illness may not be a useful strategy for reducing muscle loss. It is likely that any nutrition intervention aimed at reducing muscle wasting will need to consider the delicate relationship between both energy and protein provision. Energy intake is a fundamental requirement for utilisation of amino acids and protein (Burke 2010; Calloway 1955; Kreymann et al. 2012). However, current trends are towards lower energy intakes in the first week of critical illness due to the potential for harm seen with aggressive early energy provision (Braunschweig et al. 2015; Casaer et al. 2011). Further, interventional trials increasing delivery of protein and calories will need to be designed with caution and consider the physiological mechanisms behind such strategies.
body protein turnover method whereby hepatic oxidation may fully account for these findings. These data together suggest that continuous feeding may not allow physiological stimulation of intermittent MPS and that intermittent (bolus) feeding may be better (Atheyon et al. 2010; Markk 2015). Intermittent feeding has been previously investigated in critical illness (Evans et al. 2016; MacLeod et al. 2007), but muscle mass and function were not measured. The Muscle-UK group is currently investigating the effect of this feeding schedule on changes in the rectus femoris cross-sectional area in critically ill patients: results of an international multicenter observational study. Intensive Care Med.;35(10):1728-1737.


Burke PA, Young LS, Bistrian B. (2010). Meta-
bolic vs nutrition support: A hypothesis. JPHEN; 34(5):543-548.

Calloway DH, Spector H. (1955). Nitrogen utiliza-


grative approach to in-vivo protein synthesis measurement from whole respiratory tissue to specific proteins. Curr Opin Clin Nutr Metab Care; 7(5):531-538.


Herridge MS, Tansey CM, Mattei A, et al. (2011). Functional disability 5 years after acute respira-
tory distress syndrome. NEJM;364:1293-304.


MacLeod JB, Leffon J, Houghton D, et al. (2007). Prospective randomized control trial of intermittent versus continuous gastric feeds for criti-


McCave SA, Taylor BE, Martindale RG, et al. (2016). Guidelines for the Provision and Assess-


Morton RW, McCormy C, Phillips SM. (2015). Nutritional interventions to augment resis-