Reversal of Direct Oral Anticoagulants, C. M. Samama

Anaemia in the Critically Ill: What is the Major Culprit? F. E. Nacul, V. D. Torre, K. Bhowmick


Emergencies in Malignant Haematology for the Intensivist, J. Spring, L. Munshi

CAR-T Cell Therapy – What An Intensivist Should Know, V. Metaxa, T. Pirani, N. Singh, R. Saha

Nutritional Care for Patients with COVID-19 Requiring Intensive Care, J-C Preiser, L-A Chapple, E. Ridley

Indirect Calorimetry in Mechanically Ventilated Patients to Assess Nutritional Targets, E. Pardo, J-M Constantin
Getinge’s educational symposium
Dec. 18th | 12:30am – 1:30pm CET

Anesthesia & ICU ventilation techniques during transplant surgeries

Moderator:
Mr. Benjamin Raber
Global Therapy Development Manager OR/ICU, Getinge

Speakers & topics:
Prof. Khaled Yassen
Professor of Anaesthesia and Intensive Care, Liver Institute, Menoufia University, Egypt
Respiratory and Hemodynamic Effects of Prophylactic Alveolar Recruitment during Liver Transplantation

Prof. Giacomo Grasselli
Associate Professor Anaesthesia and Intensive Care, University of Milan, Italy
Pulmonary Volume-feedback and Ventilatory Pattern after Bilateral Lung Transplantation using Neurally Adjusted Ventilatory Assist Ventilation

www.getinge.com
This document is intended to provide information to an international audience outside of the US.
Patients in the intensive care unit frequently report haematological issues. These issues are often a result of critical illness. The most common haematological complications seen in the ICU include thrombocytopenia, anaemia, leukocytosis, thrombocytosis, and coagulopathies. In addition, emergencies in malignant haematology are commonly seen in the ICU and can cause significant mortality and morbidity in critically ill patients.

It is important to assess and understand factors that affect mortality and outcomes in patients admitted to the ICU with a diagnosis of haematological disease. Whether it's identifying the cause of anaemia or determining the right approach to coagulation problems, managing transfusion patients, determining appropriate haemoglobin concentrations in critically ill patients, or managing and improving outcomes for patients with haematological malignancies, there are many challenges for ICU teams to address when it comes to patients with haematological issues.

In our latest cover story, Clinical Haematology, our contributors discuss topics such as coagulation, anaemia, pulmonary embolism, haematological malignancy, and other important presentations of haematological disease in critical care. They provide a practical approach to addressing clinical issues related to haematology and outline effective strategies for diagnosis and management of scenarios that are commonly encountered in the ICU.

Charles Marc Samama provides an overview of different techniques to reverse direct oral anticoagulants with specific or non-specific agents, while Flavio Nacul, Valentina Torre and Kaushik Bhowmick discuss anaemia, highlight its multifactorial causes and explore whether high hepcidin levels and a blunted response to erythropoietin may play a role.

Eder Zamarrón-López, Orlando Pérez-Nieto, Jorge Miño-Bernal and co-authors talk about pulmonary embolism in the intensive care unit, how this complication in hospitalised patients is associated with high morbidity and mortality and why it is important to effectively identify and manage it.

Jenna Spring and Laveen Munshi provide an overview of emergencies commonly seen in malignant haematology, discuss the side effects of novel therapies, and highlight complications of allogeneic hematologic stem cell transplant.

Victoria Metaxa, Tasneem Pirani, Neeraj Singh and Rohit Saha discuss chimeric antigen receptor T-cell therapy and its associated toxicities and highlight the importance of monitoring recognition and prompt management in the ICU for good outcomes.

In our Matrix section, Jean-Charles Preiser, Lee-Anne Chapple and Emma Ridley discuss nutritional care for patients with COVID-19 who require intensive care, and Emmanuel Pardo and Jean-Michel Constantin provide an overview of the physiological aspects of indirect calorimetry, its limitations in use and future prospects for tailored nutrition.

Handling haematological problems in the ICU and providing acute care to patients with a primary haematological disorder can be challenging for critical care doctors. In this issue, our contributors have shared their experience in critical care practice and have presented practical approaches to managing haematology issues in the ICU.

As always, if you would like to get in touch, please email JLVincent@icu-management.org.

Jean-Louis Vincent
## COVER STORY

### 258 Reversal of Direct Oral Anticoagulants
*(Charles Marc Samama)*
This review focuses on different techniques to reverse direct oral anticoagulants, either with specific or non-specific agents.

### 262 Anaemia in the Critically Ill: What is the Major Culprit?
*(Flavio E. Nacul, Valentina D. Torre, Kaushik Bhowmick)*
Anaemia is commonly encountered in the critically ill and is associated with poor outcomes. The cause is multifactorial and includes high hepcidin levels and a blunted response to erythropoietin.

### 269 Management of Pulmonary Embolism in the Intensive Care Unit
*(Eder I. Zamarrón-López, Orlando R. Pérez-Nieto, Jorge Miño-Bernal et al.)*
Pulmonary embolism is a reason for admission to the Intensive Care Unit and this complication in hospitalised patients is associated with high morbidity and mortality. The identification and management of pulmonary embolism is a challenge for doctors.

### 279 Emergencies in Malignant Haematology for the Intensivist
*(Jenna Spring, Laveena Munshi)*
An overview of emergencies that are commonly seen in malignant haematology, side effects of novel therapies, and complications of allogeneic haematologic stem cell transplant.

### 288 CAR-T Cell Therapy – What An Intensivist Should Know
*(Victoria Metaxa, Tasneem Pirani, Neeraj Singh, Rohit Saha)*
CAR-T therapy is a promising treatment for B-cell malignancies but is also associated with toxicities. Frequent monitoring, timely recognition and prompt management in ICU are paramount to ensure good outcomes.

## MATRIX

### 292 Nutritional Care For Patients With COVID-19 Requiring Intensive Care
*(Jean-Charles Preiser, Lee-Anne Chapple, Emma Ridley)*
An overview of nutritional care for patients with COVID-19 who require intensive care.
we care intensively

41st ISICEM
International Symposium on Intensive Care & Emergency Medicine

MARCH 22-25, 2022
SQUARE - BRUSSELS CONVENTION CENTER

...Peter does too
3 weeks in the ICU

FIND US : ISICEM
ISICEM.ORG
Indirect Calorimetry in Mechanically Ventilated Patients to Assess Nutritional Targets
(Emmanuel Pardo, Jean-Michel Constantin)
An overview of the physiological aspects of indirect calorimetry, its limitations in use, the available literature and future prospects for tailored nutrition.

The Importance of Accurate Glucose Monitoring in Critically Ill Patients
(Dennis Begos)
The complexity of glucose testing, the limitations of point-of-care blood glucose monitoring systems and the need for accuracy and reliability to ensure optimised patient outcomes.

Clinical Haematology Digital Conference
(Jean-Louis Vincent, Charles Marc Samama, Flavio E. Nacul, Laveena Munshi, Victoria Metaxa)
Join our panellists on November 30 at 16:00 CET as they discuss coagulation, anaemia, haematological malignancy, and other important presentations of haematological disease in critical care.
Bringing Inhaled Sedation to intensive care with Sedaconda® ACD

Sedaconda ACD (Anaesthetic Conserving Device) is a medical device enabling delivery of inhaled anaesthetics to invasively ventilated critically ill patients. Sedaconda ACD is formerly known as AnaConDa.

For more information please contact Sedana Medical at medinfo@sedanamedical.com or visit www.sedanamedical.com

For product feedback and complaints, please contact: safetyandcomplaints@sedanamedical.com. Before use, please refer to Instructions for Use (IFU) for each product.

Sedana Medical AB (publ)
Vendvägen 89
SE-182 32 Danderyd, Sweden
+46 (0)8 124 05 200
# Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021

## Recommendation for Vasoactive Agents

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Recommendation 1</strong></td>
<td>For adults with septic shock, it is recommended using norepinephrine as the first-line agent, over other vasopressors (high quality evidence).</td>
</tr>
<tr>
<td><strong>Recommendation 2</strong></td>
<td>For adults with septic shock on norepinephrine with inadequate MAP levels, it is suggested to add vasopressin instead of escalating the dose of norepinephrine (weak recommendation, moderate-quality evidence). Remark: Vasopressin is usually started when the dose of norepinephrine is in the range of 0.25-0.5 μg/kg/min.</td>
</tr>
<tr>
<td><strong>Recommendation 3</strong></td>
<td>For adults with septic shock and inadequate MAP levels despite norepinephrine and vasopressin, it is suggested to add epinephrine (weak recommendation, low-quality evidence).</td>
</tr>
<tr>
<td><strong>Recommendation 4</strong></td>
<td>For adults with septic shock, it is suggested against using terlipressin (weak recommendation, low quality of evidence).</td>
</tr>
</tbody>
</table>

## Vasoactive Agent Management

- **Use norepinephrine as first-line vasopressor**
  - **For patients with septic shock on vasopressor**
  - **Target a MAP of 65mm Hg**
  - **Consider invasive monitoring of arterial blood pressure**

- **If central access is not yet available**
  - **Consider initiating vasopressors peripherally**

- **If MAP is inadequate despite low-to-moderate-dose norepinephrine**
  - **Consider adding vasopressin**

- **If cardiac dysfunction with persistent hypoperfusion is present despite adequate volume status and blood pressure**
  - **Consider adding dobutamine or switching to epinephrine**

<table>
<thead>
<tr>
<th>Strong recommendations</th>
<th>Weak recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>* When using vasopressors peripherally, they should be administered only for a short period of time and in a vein proximal to the antecubital fossa.</td>
<td></td>
</tr>
</tbody>
</table>

**Summary of vasoactive agents recommendations**


---

Please scan the QR code if you wish to read or download the entire Surviving Sepsis Campaign Guidelines 2021
Treating Catecholamine Refractory Hypotension in Septic Shock

- Increase mean arterial pressure in catecholamine refractory septic shock\(^1,3\)
- Reduce Norepinephrine Infusion while maintaining mean arterial pressure\(^1,2\)
- Increase Chances of Survival for patients with less severe septic shock (<15 µg/min NE\(^5\)) and patients at risk of AKI (increased serum creatinine x1.5\(^4\))

NAME OF THE MEDICINAL PRODUCT: Empressin 40 I.U./2 ml concentrate for solution for infusion. QUALITATIVE AND QUANTITATIVE COMPOSITION: One ampoule with 2 ml concentrate for solution for infusion contains argpressin acetate corresponding to 40 I.U. argpressin (equating 133 microgram). 1 ml concentrate for solution for infusion contains argpressin acetate corresponding to 20 I.U. argpressin (equating 66.5 microgram). Excipients with known effect: Each ml contains less than 23 mg of sodium. List of excipients: Sodium chloride, glacial acetic acid for pH adjustment, water for injections. Therapeutic indications: Empressin is indicated for the treatment of catecholamine refractory hypotension following septic shock in patients older than 18 years. A catecholamine refractory hypotension is present if the mean arterial blood pressure cannot be stabilised to target despite adequate volume substitution and application of catecholamines (see section 5.1 of the published SmPC). Pharmacotherapeutic group: Vasopressin and analogues, ATC code: H01BA01, Contraindications: Hypersensitivity to the active substance or to any of the excipients listed in section 6.1 of the published SmPC. Nature and contents of container. Clear glass ampoules (Type I), with a broken ring on the narrow part of the ampoule) with 2 ml concentrate for solution for infusion. Pack sizes: 5 and 10 ampoules. Not all pack-sizes may be marketed. MARKETING AUTHORIZATION HOLDER: Orpha-Devel Handels und Vertriebs GmbH, Wintergasse 85/18, 3002 Purkersdorf, Austria. DATE OF REVISION OF THE TEXT: 10/2020. Prescription status/ Delivery by pharmacies: Prescription only medicine/ Pharmacy-only. For information on undesirable effects, special warnings and precautions for use, interaction with other medicinal products and other forms of interaction, use in pregnancy and lactation and impact on fertility please refer to the published SmPC.

References:

www.aoporphan.com
Reversal of Direct Oral Anticoagulants

This review focuses on different techniques to reverse direct oral anticoagulants, either with specific or non-specific agents.

Direct oral anticoagulants (DOACs) are now standing for Vitamin K antagonists in many clinical settings. They are recognised as a major step forward for our patients. Their efficacy has been confirmed in venous thromboembolism prophylaxis and treatment, in atrial fibrillation and even in acute coronary syndromes (Stensballe and Møller 2018). The biological monitoring is now widely available, and the interactions and contraindications are well known. The ratio of efficacy/safety is widely positive. Unfortunately, the global picture is still fuzzy as far as the reversion of these agents is concerned (Jaspers et al. 2021). Only two specific antidotes are approved, but the compound which is mostly used (prothrombin complex concentrate), is a non-specific reversal agent. This review will focus on different techniques to reverse DOACs.

There are several ways to control the anticoagulant activity of these agents while acting either on absorption, on the mechanism of action, or on elimination (Crowther and Crowther 2015).

Only activated charcoal deals with absorption. Wang et al. (2014) have given 50 grammes of activated charcoal to healthy volunteers who had been previously treated with apixaban either two hours or six hours before charcoal was given. Activated charcoal was able to decrease the apixaban elimination half-life from 13 hours down to five hours. The limit of this compound is that it has to be given in a rather short time slot i.e. six hours max.

Another way to decrease DOAC concentration is to act on elimination with haemodialysis. This technique has been shown to be effective in decreasing the plasma concentration of dabigatran by 50% after a four-hour procedure (Khadzhynov et al. 2013). Of note, after the interruption of the dialysis, a rebound of the dabigatran concentration has been observed. It has to be understood that this technique is only available for dabigatran which binding to the proteins is weak. Even if it is usually implemented in an intensive care environment, it may be difficult and dangerous to insert a very large catheter in an old patient overdosed with dabigatran.

Prothrombin Complex Concentrates (PCC) and activated Prothrombin Complex Concentrates (FEIBA®) interfere with the mechanism of action. They have been tested with various doses and have shown conflicting results in different animal models (Godier et al. 2012) and healthy volunteers. They are now being used by clinicians in bleeding patients on a non-evidence basis. Several series, especially in neurology/neurosurgery patients have shown a better outcome in patients treated with four factor-PCC (4F-PCC as compared with nothing) (Grandhi et al. 2015). In the GHP-NACO registry, 4F-PCC and aPCC have been shown to partially or totally control bleeding in patients treated with DOACs (Albaladejo et al. 2017). Majeed et al. (2017) and Schulman and colleagues (2018) have published two short series of bleeding patients treated with 4F-PCC with interesting results. Ten case series with 340 patients as a total have been reviewed by Piran et al. (2019). The pooled percentage of patients with effective management of major bleeding was 69% (95% confidence interval [CI], 61-76) in two studies using the International Society on Thrombosis and Haemostasis (ISTH) criteria and 77% (95% CI, 63-92) in eight studies that did not use the ISTH criteria; all-cause mortality was 16% (95% CI, 7-26), and thromboembolism rate was 4% (95% CI, 1-8). The obvious limit of such observational series is that is difficult to determine whether 4F-PCC in addition to cessation of direct oral FXa inhibitor is more effective than cessation of direct oral FXa inhibitor alone in patients with direct FXa inhibitor-related major bleeding.

The same group has studied the efficacy/safety ratio of 4F-PCC (26 U/Kg) in 21 non-bleeding anti-Xa-treated patients who were about to undergo an emergent surgery or an invasive procedure (Piran et al. 2018). The efficacy of PCC was good in 18 patients, allowing a normal haemostasis with no thromboembolic events. Barzilai et al. (2019) have reported the results of a slightly larger study performed in two tertiary hospitals. Sixty-two apixaban or rivaroxaban patients were treated with 4F-PCC (26 U/Kg) and assessed retrospectively. Bleeding during surgery was reported in three patients (5%), no patient required additional PCC, and 16 patients (26%) were transfused. The 30-day mortality and thrombosis rates were 21% and 3%, respectively.

Today, PCC is the most widely used agent for the reversal of xabans (anti-Xa agents). The median initial dose is close to 25 IU/Kg. A reinfusion might be necessary.

Activated PCC has also been used in some patients (Albaladejo et al. 2017). FEIBA® is a kind of haemostatic bomb which was initially dedicated to haemophiliaics with an inhibitor. It has been tested in vitro.
Andexanet alpha is a recombinant modified human factor Xa protein that binds factor Xa inhibitors. This specific reversal agent is designed to neutralise the anticoagulant effects of both direct and indirect factor Xa inhibitors. Its half-life is short (less than 90 minutes) and the bolus has to be combined with a continuous IV infusion. Up to now, no data are available after a 6-hour administration. Andexanet has been shown to be effective in 101 healthy volunteers on a biological standpoint (Siegal et al. 2015). The ANNEA-4 study has evaluated 352 patients who had acute major bleeding within 18 hours after administration of a factor Xa inhibitor (either apixaban or rivaroxaban) (Connolly et al. 2019). The patients received a bolus of andexanet, followed by a 2-hour infusion. Excellent or good haemostasis occurred in 204 of 249 patients (82%) who could be evaluated. Within 30 days, death occurred in 49 patients (14%) and a thrombotic event in 34 (10%). However, it has to be emphasised that the definition of an excellent or good haemostasis was debatable and that the very high thrombotic event rate was worrying. Furthermore, no data are available with a longer infusion period. Andexanet is effective, no doubt, but many undesirable side effects have led the FDA to issue a black box warning on thromboembolic risks, ischaemic risks, cardiac arrest, and sudden death: “Treatment with the agent has been associated with serious and life-threatening adverse events, including arterial and venous thromboembolic events, cardiac arrest, sudden deaths, and ischaemic events, such as myocardial infarction and ischaemic stroke.” Is this what we expect from a specific reversal agent? Since, a study with a small number of patients has shown a lack of benefit of andexanet (Nederpelt et al. 2020) and a meta-analysis of studies on PCC, idarucizumab and andexanet has shown that the three agents developed the same efficacy for a comparable death toll but with a much higher thrombotic rate for andexanet (10.7% as compared to 4.3% for PCC and 3.8% for idarucizumab) (Gómez-Outes et al. 2021). A large study is ongoing, comparing andexanet to standard of care (mainly PCC). Results are awaited in 2023.

Ciraparantag (PER977) is a small, synthetic, water-soluble, cationic molecule that is designed to bind specifically to unfractionated heparin, low-molecular-weight heparin, and to the new oral factor Xa inhibitors (xabans) (Chan and Weitz 2021). Ciraparantag directly binds to DOACs and to enoxaparin through non-covalent hydrogen bonds and charge–charge interactions. Only phase 2 data are available for the moment. Ciraparantag provides a dose-related reversal of anticoagulation induced by steady-state dosing of apixaban or rivaroxaban. All doses of ciraparantag were well tolerated. The slow development of this compound probably relates to the almost impossibility to quantify its effect with conventional biological tests (aPTT, PT, antiXa level) because ciraparantag binds to the sodium citrate used for blood collection and to the reagents used to trigger clotting in these tests. In the reported studies, the anticoagulant effect of apixaban and rivaroxaban at steady state was assessed with the whole blood clot time (WBCT) (Ansell et al. 2021). Therefore, the quality of data is still weak and further studies with patients are needed.

Other specific antidotes for xabans are being developed by several research groups and will be available in the near future, hopefully (Jourdi et al. 2018).
as DOACs are very effective and increasingly popular, more and more patients are shifting from VKA treatments to DOACs. As a result, the number of DOACs treated patients undergoing an emergency procedure, a trauma or an overdose is increasing steadily and the need for long lasting, safe, user-friendly and cheap antidotes will increase. Physicians are keen to work with potent specific antidotes with a long half-life and low rates of thrombotic side effects.

Conflict of Interest

None. ■

References


Table 1. Comparison of specific antidotes with 4F-PCC

<table>
<thead>
<tr>
<th>Target</th>
<th>Idarucizumab</th>
<th>Andexanet alpha</th>
<th>Ciraparantag</th>
<th>4F-PCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>Xabans (tested on rivaroxaban and apixaban)</td>
<td>Xabans, LMWH, UFH</td>
<td>Xabans, VKA</td>
<td></td>
</tr>
<tr>
<td>Effective haemostasis (Gómez-Outes et al. 2021)</td>
<td>76.7%</td>
<td>80.7%</td>
<td>Unknown</td>
<td>80.1%</td>
</tr>
<tr>
<td>Thrombotic risk (Gómez-Outes et al. 2021)</td>
<td>3.8%</td>
<td>10.7%</td>
<td>Unknown</td>
<td>4.3%</td>
</tr>
<tr>
<td>Cost</td>
<td>Medium to high</td>
<td>Very high</td>
<td>Unknown</td>
<td>Low</td>
</tr>
</tbody>
</table>
Venue™ Family
Made for Your Point of Care.

Made for Anesthesia.
Whether you are performing needle guided procedures or perioperative care, we support the spectrum of use with vibrant images, and a suite of proven AI tools that simplify complicated assessments.

Contact us

Infection control
Easy to clean, smooth and seamless surfaces support infection control efforts. Foot pedals easily raise or lower systems, even while seated.

Precise blocks
Needle visualization at deep and shallow depths on even the most challenging body types.

From block to periop
Assess volume status, acquire images, make calculations, streamline patient care and create visual documentation automatically.

With our button probes, clinicians can perform procedures while controlling multiple parameters of the system from the probe without breaking the sterile field. Now, needle procedures that once required two people can be done with one.

Anaemia in the Critically Ill: What is the Major Culprit?

Anaemia is commonly encountered in the critically ill and is associated with poor outcomes. The cause is multifactorial and includes high hepcidin levels and a blunted response to erythropoietin.

Haemodilution
Fluid administration may cause a relative reduction in Hb concentration, producing a secondary decrease in oxygen delivery (DO2). This phenomenon was observed by Perel et al. (2017) in patients who received more colloids as part of perioperative goal-directed therapy (GDT); moreover Otto et al. (2017) reported that in approximately half of cases, anaemia could be explained as a result of increased plasma volume (PV) rather than by a reduction in red cell mass (RCM). Drevon et al. (2021) retrospectively analysed RCM and PV of normal, anaemic and polycythemic patients using direct measurements of red cell and plasma volumes and demonstrated that Hb is a good surrogate marker of decreased RCM for severely anaemic patients but not for moderately or mildly anaemic patients. Finally, Yan et al. (2011) analysed blood volume in patients admitted to the ICU and showed that anaemia is over-diagnosed in hypervolaemic patients, potentially producing unnecessary interventions. An accurate measurement of intravascular status, coupled with fluid balance might be useful to differentiate hypovolaemic real anaemic patients from haemodiluted ones.

Blood Loss
Although blood loss is considered a significant cause of anaemia in critically ill patients, it is not the only explanation for the high prevalence of anaemia. A study reported that bleeding was the reason for transfusion in 46% of patients (Westbrook et al. 2010). Another study showed that 18% percent of critically ill patients received transfusion associated with haemorrhage, while 26% received transfusion not associated with haemorrhage (Walsh et al. 2004). Potential causes of blood loss are trauma, surgery, gastrointestinal, vascular, and obstetric bleeding. Moreover, coagulopathies, thrombocytopenia, and phlebotomy can cause blood loss. Phlebotomy is highly associated with changes in Hb and haematocrit levels, can contribute to anaemia and is an underrecognised cause of anaemia in critically ill patients. A prospective blood sampling study of 1136 patients being cared for in 145 intensive care units across Europe revealed that the mean number of blood samples taken per day was 4.6, and the mean total volume of blood sampled per day was 41.1 mL (Vincent et al. 2002). Strategies to reduce anaemia due to blood sampling procedures include switching to small-volume phlebotomy tubes and replacing routine multiple daily phlebotomies for blood sampling with phlebotomy only when essential (McEvoy and Shander 2013).
Hepcidin

Hepcidin is the main regulator of plasma iron concentrations. It is a small 25-amino acid peptide mainly synthesised by the liver. Hepcidin is produced from a pre-pro-peptide of 84 amino acids that is biologically inactive. After an inflammatory stimulus, cytokines released by activated leukocytes induce hepcidin synthesis, and hepcidin binds to ferroportin, the pore that allows egress of iron from intestinal epithelial cells and reticuloendothelial macrophages. Ferroportin is predominantly expressed in duodenal cells and macrophages, allowing iron absorption from the digestive lumen (Figure 1) and iron recycling after erythropagocytosis. Inflammation and iron overload induce hepcidin synthesis, whereas iron deficiency, hypoxia, and erythroid expansion inhibit hepcidin synthesis (Lasocki et al. 2011). Therefore, high hepcidin levels block intestinal iron absorption and macrophage iron recycling, inhibiting iron entry into plasma and causing decreased iron delivery for erythropoiesis and functional iron deficiency anaemia (Heming et al. 2011; Pagani et al. 2019).

Reduced Levels of Erythropoietin

Human erythropoietin (EPO) is a 30.4 kDalton glycoprotein hormone composed of a single 165 amino acid residue chain to which four glycans are attached. It is produced mainly by peritubular cells in the kidneys of adults and by hepatocytes in the foetus. EPO is essential for the survival, proliferation, and differentiation of erythrocyte progenitors in the bone marrow, and its level is continuously adjusted to regulate erythrocytes production and to optimise tissue oxygenation. Systemic hypoxia activates hypoxia-inducible factor (HIF), which stimulates EPO production and iron uptake and utilisation in the bone marrow to facilitate erythroid progenitor maturation and proliferation. EPO needs a receptor (EPO-R) that is expressed on erythroid cell progenitors and in a variety of tissues and cell types, such as the brain, retina, heart, kidneys, vascular smooth muscle cells, myoblasts, and vascular endothelium (McCook et al. 2012). While absolute EPO levels are not necessarily decreased in critically ill patients, there is evidence for a blunted EPO response to anaemia secondary to increased levels of cytokines such as IL-1, IL-6 and TNF-alpha (Rogiers et al. 1997; von Ahsen et al. 1999), reinforcing that a blunted EPO response is a factor contributing to anaemia in critical illness. Mainly IL-1 and TNF-alpha seem to be responsible for the defect in EPO production in severe systemic inflammatory diseases (Jelkemann 1998).

Neocytolysis

Neocytolysis is the selective destruction of erythrocytes that have been formed during stress erythropoiesis in conditions of hypoxia, with the objective of decreasing the excess number of erythrocytes that are no longer required (Mairbäurl et al. 2018). This phenomenon was first described in astronauts after returning from space and people descending from high altitude. Upon entering microgravity, astronauts’ blood volume in the extremities pools centrally. The body adapts by transudating approximately 20% of the plasma volume into the soft tissues and suppressing EPO production (Rice and Alfrey 2005). Similar processes seem to occur in descent from high altitude. Rice et al. (2001) studied polycythaemic residents of high altitude upon travel to sea level and found a rapid decrease in erythrocyte mass within 3–7 days after descent. They also demonstrated a rapid decrease in EPO levels, and increased bilirubin levels. In both situations, there is a rapid reduction in erythrocyte levels upon return to normoxia that cannot be accounted for by cessation of cell production despite a reduced EPO level. Therefore, EPO insufficiency, a known mechanism of decreased RBC production, cannot elucidate the reduction in Hb in critically ill patients.
over the first few days. Neocytolysis can explain how red cell mass can be reduced over a short time frame of a few days, leading to rapid development of anaemia. Although the mechanism of neocytolysis has not been clearly defined, it is likely dependent on decreased EPO serum levels.

Nutrient Deficiency
Due to inadequate nutritional support and increased demands, vitamin B12 and folate deficiency may worsen in critically ill patients, potentially producing anaemia. Deficiency of iron, vitamin B12, folate, or copper can result in acquired microcytic or macrocytic anaemia. Rodriguez et al. (2001) studied 184 critically ill patients and demonstrated that 4 (2%) were B12 deficient and 4 (2%) were folate deficient. Thus, these deficiencies probably do not play an important role in the pathogenesis of anaemia. Serum vitamin B12 level should be measured in all patients with unexplained macrocytosis. All individuals who are nutritionally compromised or who have had gastric surgery should also have serum folate measured (McEvoy and Shander 2013).

Drug Reactions
Drugs administered in ICU can have adverse effects that can lead to anaemia by two distinct pathways, one by causing haemolysis and the other way by suppressing normal renal release of erythropoietin. Drug induced haemolytic anaemia, although rare, is a serious adverse effect. Few antimicrobials like piperacillin and ceftriaxone can cause it, whereas suppression of erythropoietin can be caused by commonly used drugs like angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, calcium channel blockers, theophylline and β-adrenergic blockers.

Conclusion
Anaemia is a common occurrence in critically ill patients, and it is associated with poor outcomes. The cause of anaemia is complex and often multifactorial, and in many cases, it can be due to inflammation. Humans, as rationalising beings, generally trust that they are accurately perceiving where the problem is, and they like to find a culprit to blame. In the case of anaemia in the critically ill, we can blame, in most cases, high hepcidin levels and a blunted response to EPO.

Conflict of Interest
None.

References
What is M-CONNECT?

Connecting Infinite Possibilities

- An IT solution that connects patient, caregiver, workflow and system together inside hospital
- Synchronize the patient information and data with the information system automatically
- Integrate all bedside devices data to the information system automatically
- Optimize clinical workflow efficiently for better patient care
- Access patient data anywhere anytime
- Maximize hospitalwide medical resources

Learn more on www.mindray.com
Critically ill patients are not found just in intensive care units, but throughout the hospital: emergency departments, post-anaesthesia care units, operating rooms, and many other environments now care for the critically ill. These patients require specialised, timely, and individualised care to achieve the best outcomes.

Glycaemic control is a component of care in many, if not most critically ill patients, and the foundation of proper glycaemic control is accurate and timely measurement of blood glucose. Point-of-care testing (POCT) would seem to be a logical solution, but it is not as simple as it appears. Many POC blood glucose monitoring systems (BGMS) simply do not perform adequately in these patients. In fact, only one BGMS has been approved by the U.S. FDA for use in critically ill patients. A major reason for poor performance in some BGMS is from interfering agents. These can be endogenous (anaemia, hypotension), or exogenous such as medications. Drugs which are commonly used in the ICU such as dopamine, acetylcysteine, icodextrin, and ascorbic acid are known to cause falsely elevated glucose readings in most meters.

Anaemia is present in over 70% of ICU patients, and often worsens over time due to phlebotomy (Thavendiranathan et al. 2005). It is also known to cause factitious hyperglycaemia with certain BGMS. While glycaemic control has long been known to play a role in the ICU, it is also being increasingly recognised as important in COVID-19 patients. Diabetes is a comorbidity which increases morbidity and mortality in COVID-19 patients, and well controlled blood glucose in this population is associated with improved outcomes (Zhu et al. 2020). Even in non-diabetic patients with COVID-19, those with uncontrolled hyperglycaemia had a mortality rate of over 40% (Bode et al. 2020).

Clinicians caring for these patients therefore face a difficult situation: send all glucose specimens to the central lab, with its inherent drawbacks (delay in results, preanalytical errors, etc.), or use a BGMS which may give inaccurate results. Erroneously elevated glucose, regardless of the cause, can lead to overtreatment with insulin, resulting in hypoglycaemia. In fact, at least one death has been reported due to insulin administration in a patient on high dose ascorbic acid who had a falsely high glucose level measured on a BGMS, and there are also numerous case reports of significant and permanent neurologic damage due to inappropriate insulin administration in the setting of other interfering agents (Disque et al. 2013; Jadhav et al. 2013). So, this is not just a theoretical concern. The Italian point-of-care study group recently issued

The Importance of Accurate Glucose Monitoring in Critically Ill Patients

The complexity of glucose testing, the limitations of point-of-care blood glucose monitoring systems and the need for accuracy and reliability to ensure optimised patient outcomes.

Figure 1: Parkes Error Grid showing correlation between Nova StatStrip and Hospital Core Lab Glucose Measurements. 99.3% of the results fall into Zone A, meaning there is no clinical significance (Jadhav et al. 2013).
a recommendation not to use BGMS in critical care settings unless the meter is certified for use in critically ill patients (Rampoldi et al. 2021).

One interfering agent that is being utilised more is ascorbic acid (vitamin C). A recent search on clinicaltrials.gov shows over 100 active or recently completed studies using high dose ascorbic acid for COVID-19, sepsis, and burns, among others. One such trial, the LOVIT study (which looks at vitamin C to lessen organ dysfunction) states in its protocol that “Blood glucose can only be measured by one of the following three methods: hospital core laboratory instruments; a point-of-care arterial blood gas machine whose glucose measurement has been validated in the setting of high blood concentration of ascorbic acid; and point-of-care StatStrip glucometers (Nova Biomedical, Waltham, MA, USA), whose measurements have been shown to be accurate in the presence of high blood concentration of ascorbic acid.” (Masse et al. 2020).

In one large study done in five ICUs in three countries, involving nearly 1700 patients, one BGMS was compared to the hospital central laboratory analyser (DuBois et al. 2017). Using a Parkes Error Grid, 99.3% of results were in Zone A, which means there was no clinical significance in the results between the BGMS and the central lab (Figure 1). The remaining results were in Zone B, representing minimal clinical significance. In addition, the performance of the BGMS met the most current standard for glucose measurement as defined by CLSI POCT12-A3 with 95.4% of results <100 mg/dL and 96.5% of the results >100 mg/dL falling within 12 mg/dL of the core lab. No significant interferences were identified in any patient.

Given the complexity of glucose testing it is imperative for clinicians and laboratorians to be aware of the limitations of any BGMS that is being used in settings where critically ill patients are cared for. In a high-risk environment, where accuracy and reliability can directly impact patient outcomes, not all BGMS devices are created equally.

Key Points

- Glycaemic control is a component of care in many, if not most critically ill patients.
- Point-of-care testing would seem to be a logical solution, but many POC blood glucose monitoring systems do not perform adequately in these patients.
- Erroneously elevated glucose, regardless of the cause, can lead to overtreatment with insulin, resulting in hypoglycaemia.
- Given the complexity of glucose testing it is imperative for clinicians and laboratorians to be aware of the limitations of any BGMS that is being used in settings where critically ill patients are cared for.

References


Hospital Glucose and Ketone Monitoring System
The Only Glucose Meter with No Known Clinical Interferences

8,000 medications investigated - no clinical interferences found
Glucose accuracy proven in study of 1,698 critically ill patients
Measures blood ketones for early detection and monitoring of ketoacidosis
NovaNet wired and wireless connectivity
Management of Pulmonary Embolism in the Intensive Care Unit

Pulmonary Embolism (PE) is a reason for admission to the Intensive Care Unit (ICU) and this complication in hospitalised patients is associated with high morbidity and mortality. The identification and management of PE is a challenge for doctors.

Introduction

Pulmonary Embolism (PE) is the third cardiovascular cause of death since its clinical expressions in critical patients may go unnoticed or present themselves as sudden respiratory arrest or failure, which could lead to death. The approach in the ICU is focused on timely identification, haemodynamic and respiratory support, and reperfusion therapy, either with thrombolysis or thrombectomy (Essien et al. 2019).

Epidemiology

PE affects 900,000 people per year in United States and Europe, out of which 100,000 die (Torres and Haut 2020). Its incidence has a range of 70 to 183 per 100,000 people per year (Essien et al. 2019; Ashrani and Heit 2008; Spencer et al. 2006). From 10 to 30% of these patients die within 30 days and 25% are expressed as sudden death (White 2003). The patients’ quality of life is reduced when complications such as post-thrombotic syndrome and chronic pulmonary hypertension appear. PE is seen more frequently in patients of >40 years. Between 25 and 50% of cases do not have a clear aetiology, 20% are associated with a recent surgery and between 15 and 25% are associated with cancer. Factors associated mainly with mortality are old age, cancer, and previous heart or pulmonary diseases, which happened 30 days after a deep vein thrombosis (DVT) in 6% of the patients and after a PE in 12% (White 2003). Patients with PE who are not treated show a mortality of 25%, decreasing up to 1% in patients who received appropriate treatment (Essien et al. 2019). Depending on PE seriousness, patients with normal blood pressure show a mortality of 2%, 30% in patients with right ventricular failure, and 65% in patients who go into cardiopulmonary arrest (White 2003).

PE has a mortality risk 18 times higher in comparison with patients with equal demographic conditions and those who do not have the disease (Essien 2019). The main factors of poor prognosis are presentation with syncope, shock and hypotension, right ventricular dysfunction, elevated troponins, and B-type natriuretic peptide (Vacca and Jehle 2013). Mortality is independent of the thrombus location in the pulmonary vasculitis, being higher in proximal involvement (10.7%) than in subsegmental involvement (6.5%) (Den Exter et al. 2013).

Pathophysiology

The cause of venous thromboembolism is multifactorial, commonly requiring a predisposing risk factor (e.g., thrombophilia) and/or a triggering one (e.g., surgery). A prothrombotic and proinflammatory aetiology in which coagulation factors interrelate extensively with immune cells is proposed (Khan et al. 2021). Venous thrombosis triggering mechanisms are related to
Virchow’s Triad, characterised by venous stasis, vascular endothelial injury, and hypercoagulability, favoured by hypoxia and constant inflammation. Tissue damage leads to the activation of von Willebrand factor, E-selectin and P-selectin receptors. Tissue factor (TF), erythrocytes, and leukocytes bind to these receptors; this binding causes activation of the direct coagulation cascade, which is exacerbated by the action of neutrophil extracellular traps (NETs). NETs activate factor XII which initiates the intrinsic coagulation pathway producing factor X and thrombin. Finally, the thrombus is formed which is composed of fibrin, NETs, platelets, and red blood cells.

**Right Ventricular Failure in PE**

There are anatomical and functional differences between the right and left ventricles. The right ventricle (RV) is part of the pulmonary circulation, a system of low pressures, with low vascular resistances and greater distensibility compared to the left ventricle (LV) and the systemic circulation. When a thrombotic event occurs in the pulmonary artery or arteries (Figure 1), there is a large increase in RV afterload, which is exacerbated by a vasoconstrictor effect triggered by hypoxaemia and caused by increased serotonin and thromboxane (Weinstein et al. 2021). This results in a reduction of RV stroke volume, which limits antegrade blood flow and causes dilatation of said cavity (Bryce et al. 2019). RV dilatation causes displacement of the interventricular septum in the direction of the LV causing a reduction in its SV, which in turn decreases cardiac output (CO) and is accompanied by coronary hyperperfusion. This phenomenon is known as ventricular interdependence. The increase in transmural pressure of the RV wall leads to occlusion of its corresponding coronary arteries and generation of ischaemia (Mahmood 2018). Another characteristic is tricuspid annular dilatation that causes tricuspid regurgitation with reduced RV volume. In short, the sum of these events results in reduced cardiac output with reduced blood pressure, increased coronary hyperperfusion with obstructive shock and death.

**High- and Intermediate-Risk PE**

A diagnosed PE that does not cause RV dysfunction is classified as mild or low-risk PE, and these patients can usually be managed on an outpatient basis. When PE is accompanied by RV dysfunction indicated by cardiac biomarkers and/or imaging studies, it is classified as intermediate-risk or submassive PE. If there is sustained hypotension (systolic blood pressure <90 mmHg for >15 minutes or a decrease of >40 mmHg) and clinical data of obstructive shock or cardiac arrest, it is categorised as high-risk or massive PE (Table 1). Massive PE occurs in 5% of patients with a mortality of 18–65% of cases; on the other hand, submassive PE occurs in 40% of patients with a mortality of 5–25% (Bryce et al. 2019). The Pulmonary Embolism Severity Index (PESI) and simplified PESI (s-PESI) (Table 2) can also be used to categorise PE into mild, intermediate, or high risk (Konstantinides et al. 2019).

**Table 1.** Classification of pulmonary embolism severity and the risk of early (in-hospital or 30 day) death (Konstantinides et al. 2019)

<table>
<thead>
<tr>
<th>Early mortality risk</th>
<th>Haemodynamic instabilitya</th>
<th>Clinical parameters of PE severity and/or comorbidity: PESI class III–V or sPESI ≥1</th>
<th>RV dysfunction on TTE or CTPAe</th>
<th>Elevated cardiac troponin levelsf</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>+</td>
<td>(+)4</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Intermediate–high</td>
<td>–</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Intermediate–low</td>
<td>–</td>
<td>+e</td>
<td>One (or none) positive</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Assessment optional; if assessed, negative</td>
</tr>
</tbody>
</table>

Abbreviations: BP = blood pressure; CTPA = computed tomography pulmonary angiography; H-FABP = heart-type fatty acid-binding protein; NT-proBNP = N-terminal pro B-type natriuretic peptide; PE = pulmonary embolism; PESI = Pulmonary Embolism Severity Index; RV = right ventricular; sPESI = simplified Pulmonary Embolism Severity Index; TTE = transthoracic echocardiogram.
a One of the following clinical presentations: cardiac arrest, obstructive shock (systolic BP _ 90 mmHg despite an adequate filling status, in combination with end-organ hypoperfusion), or persistent hypotension (systolic BP _ 40 mmHg for > 15 min, not caused by new-onset arrhythmia, hypovolaemia, or sepsis).
b Prognostically relevant imaging (TTE or CTPA) findings in patients with acute PE, and the corresponding cut-off levels, are graphically presented in Figure 3, and their prognostic value is summarised in Supplementary Data Table 3.
c Elevation of further laboratory biomarkers, such as NT-proBNP > 600 ng/L, H-FABP > 6 ng/mL, or copeptin > 24 pmol/L, may provide additional prognostic information. These markers have been validated in cohort studies but they have not yet been used to guide treatment decisions in randomised controlled trials.
d Haemodynamic instability, combined with PE confirmation on CTPA and/or evidence of RV dysfunction on TTE, is sufficient to classify a patient into the high-risk PE category. In these cases, neither calculation of the PESI nor measurement of troponins or other cardiac biomarkers is necessary.
e Signs of RV dysfunction on TTE (or CTPA) or elevated cardiac biomarker levels may be present, despite a calculated PESI of III or an sPESI of 0.234. Until the implications of such discrepancies for the management of PE are fully understood, these patients should be classified into the intermediate-risk category.

Table 2. Original and simplified Pulmonary Embolism Severity Index.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Original version</th>
<th>Simplified version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Age in years</td>
<td>1 point (if age &gt;80 years)</td>
</tr>
<tr>
<td>Male sex</td>
<td>+10 points</td>
<td>-</td>
</tr>
<tr>
<td>Cancer</td>
<td>+30 points</td>
<td>1 point</td>
</tr>
<tr>
<td>Chronic heart failure</td>
<td>+10 points</td>
<td>1 point</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>+10 points</td>
<td>1 point</td>
</tr>
<tr>
<td>Pulse rate ≥110 bpm</td>
<td>+20 points</td>
<td>1 point</td>
</tr>
<tr>
<td>Systolic BP &lt;100 mmHg</td>
<td>+30 points</td>
<td>1 point</td>
</tr>
<tr>
<td>Respiratory rate &gt;30 breaths per min</td>
<td>+20 points</td>
<td>-</td>
</tr>
<tr>
<td>Temperature &lt;36°C</td>
<td>+20 points</td>
<td>-</td>
</tr>
<tr>
<td>Altered mental status</td>
<td>+60 points</td>
<td>-</td>
</tr>
<tr>
<td>Arterial oxyhaemoglobin saturation &lt;90%</td>
<td>+20 points</td>
<td>1 point</td>
</tr>
</tbody>
</table>

**Risk stratification**

- **Class I: ≤65 points**
  - very low 30 day mortality risk (0–1.6%)
- **Class II: 66–85 points**
  - low mortality risk (1.7–3.5%)
- **Class III: 86–105 points**
  - moderate mortality risk (3.2–7.1%)
- **Class IV: 106–125 points**
  - high mortality risk (4.0–11.4%)
- **Class V: >125 points**
  - very high mortality risk (10.0–24.5%)

- **0 points** = 30 day mortality risk 1.0%  
  (95% CI 0.0–2.1%)
- **≥1 point(s)** = 30 day mortality risk 10.9% (95% CI 8.5–13.2%)

Abbreviations: BP = blood pressure; b.p.m. = beats per minute; CI = confidence interval. aBased on the sum of points.
Cardiac troponin elevation as a marker of cardiac necrosis is associated with higher short-term mortality and more adverse events (Becattini et al. 2007). Increased values of other cardiac biomarkers such as heart-type fatty acid-binding protein (H-FABP), N-terminal pro B-type natriuretic peptide (NT-proBNP) and brain natriuretic peptide (BNP) are associated with RV involvement.

The echocardiographic findings associated with RV dysfunction are (Figure 2):

- RV size increase in the parasternal long axis
- RV/LV relationship increase >0.9
- Flattening of the intraventricular septum in the parasternal short axis
- Absence of the inferior vena cava collapsibility
- 60/60 sign
- Mobile thrombus in the right atrium or RV
- TAPSE <16mm
- Decreased tricuspid annular peak systolic velocity <9.5 cm/s

![Figure 2. Graphic representation of transthoracic echocardiographic parameters in the assessment of right ventricular pressure overload (Adapted from Konstantinides et al. 2019).](image)

*Note:* 
- AO = peak late diastolic (during atrial contraction) velocity of tricuspid annulus by tissue Doppler imaging; AcT = right ventricular outflow Doppler acceleration time; Ao = aorta; E0 = peak early diastolic velocity of tricuspid annulus by tissue Doppler imaging; IVC = inferior vena cava; LA = left atrium; LV = left ventricle; RA = right atrium; RiHTh = right heart thrombus (or thrombi); RV = right ventricle/ventricular; S0 = peak systolic velocity of tricuspid annulus by tissue Doppler imaging; TAPSE = tricuspid annular plane systolic excursion; TRPG = tricuspid valve peak systolic gradient.

Evaluation of a Critical Patient With PE

The main symptoms of patients with PE are commonly sudden onset dyspnoea and tachypnoea; tachycardia, chest pain, pelvic limb pain, fever, haemoptysis or syncope may also be experienced. Electrocardiographic changes such as sinus tachycardia, complete right bundle branch block and S wave pattern in DI, Q wave in DIII, and inverted T wave in DIII may be seen in laboratory tests although these are relatively infrequent. However, diagnosing a severely hospitalised patient under sedation and mechanical ventilation who gets complicated with PE is challenging; thus, it should be considered when patients develop sudden respiratory and haemodynamic deterioration, as tachycardia and pain may be suppressed by painkillers and sedatives. The increase in physiological dead space due to pulmonary hypoperfusion disorder may generate an increase in arterial pressure ($\text{PaCO}_2$) and hypoxaemia, without modifications to the respiratory system compliance or resistance and, therefore, without evident modifications to the respiratory mechanics during mechanical ventilation. Electrocardiographic changes and swelling of the pelvic limbs may also be present, which may complement the diagnostic suspicion.

In a hospitalised patient with suspected or diagnosed PE, continuous monitoring of blood pressure (BP), respiratory rate (RR), heart rate (HR), peripheral partial blood
Broad spectrum of treatment options in both, heart and lung support

- Treatments for heart and lung support on one single platform
- For ECMO treatments with Advanced Mode applicable from neonates up to adults
- From partial CO₂ removal to full oxygenation¹,²
- VV, VA ECMO applications
  - ✓ ICU
  - ✓ Operating room
  - ✓ Cardiac catheterization lab


End of 2016, Xenios became a part of Fresenius Medical Care, the world’s leading provider of products and services for people with chronic kidney failure.

XENIOS AG • Im Zukunftspark 1 • 74076 Heilbronn • Germany • Phone +49 (0) 7131 2706 0 • www.xenos-ag.com
oxygen saturation (SpO₂), consciousness and tissue perfusion data such as capillary filling, skin colouration and temperature and uresis is recommended, intentionally looking for clinical data of shock due to haemodynamic instability. Bedside ultrasound is recommended to detect: 1) RV dysfunction data, 2) thrombi detection in the right ventricle, and 3) thrombi detection in femoral veins proximal segment. Haemodynamic management should be established immediately and, if possible, diagnostic confirmation with pulmonary angiography or ventilation/perfusion scan after stabilisation.

Specific Management
Anticoagulation

Anticoagulation therapy decreases mortality in patients with PE (Weinstein et al. 2021). Anticoagulants may be used enterally or parenterally. The group of direct oral anticoagulants (DOACs) and Vitamin K antagonists (VKAs) are included in enteral feeding; the most commonly used DOACs are rivaroxaban and apixaban, whereas VKAs include warfarin and acenocoumarin. Parenteral anticoagulants include unfractionated Heparin (UFH) and low-molecular-weight heparins (LMWHs), of which the most commonly used are enoxaparin and fondaparinux (Table 3).

DOACs are recommended over VKAs because they have fewer pharmacological interactions and have been shown to have a lower incidence of adverse effects, including clinically relevant bleeding; moreover, they do not require biochemical monitoring with serial laboratory tests which are necessary for monitoring the effectiveness of VKAs since an International Normalised Ratio (INR) of 2 to 3 must be kept. In addition, DOACs may be administered as soon as the diagnosis is confirmed and do not require prior parenteral anticoagulation, unlike VKAs. If VKAs are used, parenteral anticoagulation should be started at the same time and kept for at least 5 days and the INR value of 2 to 3 should be corroborated for at least 2 consecutive days.

As for parenteral anticoagulation, comparative studies have shown that LMWHs are associated with a decrease in thrombotic events, greater decrease in thrombus size, and less bleeding when compared to UFH; besides they are the anticoagulation treatment of choice for pregnant patients. However, some indications that might suggest using UFH are patients with haemodynamic instability and the need for surgical reperfusion therapy or other urgent major surgery (Leentjens et al. 2017).

<table>
<thead>
<tr>
<th>Direct Oral Anticoagulants</th>
<th>Regimen</th>
<th>Contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivaroxaban</td>
<td>15 mg twice a day for 21 days</td>
<td>CrCl &lt;30 ml/min Moderate or severe hepatic impairment (Child Pugh B and C), or hepatic disease associated with coagulopathy Concomitant use of combined P-GP and strong CYP3A4 inhibitors or inducers</td>
</tr>
<tr>
<td></td>
<td>Extended phase: 20 mg once daily with food</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dabigatran</td>
<td>150 mg twice a day</td>
<td>CrCl &lt;30 ml/min Concomitant treatment with P-GP inhibitors in patients with crcl &lt;50ml/min Concomitant treatment with P-GP inducers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apixaban</td>
<td>10 mg twice a day for 7 days</td>
<td>CrCl &lt; 15ml/min Severe hepatic impairment (Child Pugh C), or hepatic disease associated with coagulopathy Strong dual inhibitors or inducers of CYP3A4 and P-GP</td>
</tr>
<tr>
<td></td>
<td>Long-term phase: 5mg twice daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extended: 2.5mg twice a day after at least 6 months of treatment</td>
<td></td>
</tr>
<tr>
<td>Edoxaban</td>
<td>Initial therapy with parenteral anticoagulation for 5-10 days should precede administration of Edoxaban long-term: 60 mg/day 30 mg/day can be considered in patients with ≥ 1 of the following factors: CrCl 15-50ml/min; body weight ≤ 60 kg; cyclosporin, dronedarone, erythromycin, or ketoconazole</td>
<td>CrCl &lt;15ml/min Moderate or severe hepatic impairment (Child Pugh B and C), or hepatic disease associated with coagulopathy Concomitant treatment with rifampin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICU Management & Practice 6 - 2021
**Low-Molecular Weight Heparins**

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Dose</th>
<th>Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemiparin</td>
<td>115 UI/kg/day S.C.</td>
<td>Adjust kidney function (CrCl &lt; 30 ml/min) 3500 UI</td>
</tr>
<tr>
<td>Dalteparin</td>
<td>100 UI/kg/12h S.C.</td>
<td>Not recommended (control anti-Xa)</td>
</tr>
<tr>
<td>Enoxaparin</td>
<td>1 mg/kg/12h S.C.</td>
<td>40 mg/12h, CrCl &lt; 15 ml/min: contraindicated</td>
</tr>
<tr>
<td>Nadroparin</td>
<td>86 UI/kg/12h S.C.</td>
<td>CrCl &gt; 50 and &gt; 30 ml/min: reduce between 25 and 33%, CrCl &lt; 30 ml/min: not recommended</td>
</tr>
<tr>
<td>Tinzaparin</td>
<td>175 ui/kg/day S.C.</td>
<td>Anti-Xa control</td>
</tr>
<tr>
<td>Fondaparinux</td>
<td>7.5 mg/day S.C.</td>
<td>Cr Cl between 30-50 ml/min: use with caution, same dosage of 5 to 7.5 mg SQ q daily, CrCl &lt; 30 ml/min: contraindicated</td>
</tr>
</tbody>
</table>

**Unfractionated Heparin**

<table>
<thead>
<tr>
<th>Bolus dose</th>
<th>Immediate infusion to follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial dose</td>
<td>80 U/kg 18 U/kg/h</td>
</tr>
<tr>
<td>Adjustment according to control of ttpa</td>
<td></td>
</tr>
<tr>
<td>&lt;35 s</td>
<td>80 U/kg 4 U/kg/h</td>
</tr>
<tr>
<td>35-45 s</td>
<td>40 U/kg 2 U/kg/h</td>
</tr>
<tr>
<td>46-70 s</td>
<td>Without modifications</td>
</tr>
<tr>
<td>71-90 s</td>
<td>Decrease infusion to 2 U/kg/h</td>
</tr>
<tr>
<td>&gt;90 s</td>
<td>Stop infusion one hour, then resume at 3 U/kg/h</td>
</tr>
</tbody>
</table>

**Thrombolytics**

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Dose</th>
<th>Contraindications to fibrinolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alteplase</td>
<td>100 mg over 2h, 0.6 mg/kg over 15min (max. dose 50 mg)</td>
<td><strong>Absolute</strong> History of haemorrhagic stroke or stroke of unknown origin, Ischaemic stroke in previous 6 months, Central nervous system neoplasm, Major trauma, surgery, or head injury in previous 3 weeks, Bleeding diathesis, Active bleeding</td>
</tr>
<tr>
<td>Streptokinase</td>
<td>250 000 U as a loading dose over 30 min, followed by 100 000 U/h over 12-24h</td>
<td><strong>Relative</strong> Transient ischaemic attack in previous 6 months, Oral anticoagulation, Pregnancy or first post-partum week, Non-compressible puncture sites, Traumatic resuscitation, Refractory hypertension (systolic bp &gt; 180 mmHg), Advanced liver disease, Infective endocarditis, Active peptic ulcer</td>
</tr>
<tr>
<td>Urokinase</td>
<td>4400 U/kg as a loading dose over 10 min, followed by 4400 U/kg/h over 12-24h, Accelerated regimen: 3 million U over 2h</td>
<td></td>
</tr>
<tr>
<td>Tenecteplase</td>
<td>30-50 mg IV bolus over 5 sec once (based on weight) &lt; 60 kg: 30 mg, 60-70 kg: 35 mg, 70-80 kg: 40 mg, 80-90 kg: 45 mg, &gt; 90 kg: 50 mg</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Anticoagulants and thrombolytics
Thrombolysis
Thrombolysis used in patients with massive PE has been successful in reducing mortality up to 50%. It is associated with faster clot dissolution but there is a risk of hemorrhage. As for thrombolysis in intermediate-risk PE, significant decrease in RV dysfunction, decreased need for escalating interventions and improved quality of life (Martí et al. 2015; Becattini et al. 2014; Kline et al. 2014), lower mortality or escalation in treatment but with a higher chance of hemorrhage (Weinstein 2021) have been reported. Thus, thrombolysis is only fully justified in case of PE with haemodynamic instability (Konstantinides et al. 2019).

Surgical Treatment
Surgical treatment of PE includes open pulmonary embolectomy or catheter-directed thrombolysis. To date, studies supporting the efficacy of surgical management are few; however, patients with high-risk PE or in cardiorespiratory arrest may benefit from this intervention. Compared to the use of a second dose of thrombolytic when there is no improvement with the initial dose, surgical management has been reported to have better results. Preoperative thrombolysis is associated with an increased risk of surgical bleeding but is not an absolute contraindication. Therefore, thrombectomy is indicated when thrombolysis is contraindicated, fails, or when cardiopulmonary resuscitation is needed; the perioperative mortality rate in these cases is <6% (Yamamoto 2018). Anticoagulation is required following surgical resolution; however, there is no consensus on when the best time is to start it and it should be indicated according to the doctor’s judgment. A regimen of anticoagulation with heparin for at least 5 days before switching to DOACs might be recommended (Konstantinides et al. 2019).

Haemodynamic and Respiratory Management in the ICU Patient With PE
Respiratory Support
Appropriate tissue oxygenation must be guaranteed in order to avoid organ failure; furthermore, it contributes to reduce pressure in pulmonary circulation and RV afterload by avoiding vasoconstriction due to a decrease in pulmonary vascular resistance mediated by hypoxaemia (Lyhne 2021). Oxygen therapy also contributes to alleviate dyspnoea and decrease work of breathing and respiratory rate. To increase the fraction of inspired oxygen (FiO2), conventional devices such as low-flow nasal cannulas, face mask or mask with oxygen reservoir with non-re-breathing valve may be used. These devices should be scaled according to the clinical situation, a goal of SpO2 from 90 to 96% or PaO2 from 60 to 90 mmHg may be recommended for most cases (Erol 2018). High-flow nasal cannula (HFNC) can deliver a FiO2 close to 1, generating a rapid increase in SpO2 and PaO2. Thermal regulation of inhaled oxygen preserves mucociliary function and contributes to device tolerance and increased flow that can reach up to 50 to 70 L/min. It could favour ventilation by increasing end-expiratory lung volume, increasing functional residual capacity, and decreasing respiratory drive and work of breathing. This benefit has been shown to be effective in retrospective studies and case reports (Aguilar-Piedras 2021; Vikas 2021; Messika 2017).

Regarding patients in whom adequate oxygenation cannot be guaranteed and who persist having tachypnoea and increased respiratory effort, noninvasive ventilation (NIV) may be used to support ventilation by releasing the load on the inspiratory muscles, conserving the negativity exerted by them and favouring venous return, unlike invasive ventilation.

In patients with high-risk PE, it is recommended to avoid intubation and invasive mechanical ventilation (IMV) when possible and to exhaust respiratory support strategies mentioned above; if these fail and there is one or more indications to start IMV, it should be carried out in the safest possible way. Using cardio-stable drugs during the rapid intubation sequence (etomidate, ketamine) may be recommended unless contraindicated. The use of propofol or midazolam for induction could decrease cardiac rate and contractility and worsen the haemodynamic status (Zamarron 2019).

Fluid therapy and Diuretics
Intravenous fluids should be used with caution because the increase in RV end-diastolic pressure at the expense of preload will contribute to a decrease in LV end-diastolic volume, decrease in LV systolic volume and, thus, cardiac output, paradoxically worsening the haemodynamic status (Meyer 2016). On the other hand, the use of diuretics in normotensive patients with PE is associated with a decrease in the severity of PE without affecting renal function; theoretically, this may be due to a decrease in RV congestion and secondary venous congestion (Lim 2021).

Vasopressors, Inotropes, and Vasodilators
Norepinephrine (NE) is the vasopressor of first choice for patients in shock. In the case of PE accompanied by haemodynamic instability, NE can improve RV performance by enhancing coronary perfusion pressure (Meyer 2016). Vasopressin, methylene blue, and other vasopressors could increase BP in case of refractory shock; however, there is not enough information to issue recommendations on their use in this pathology. Dobutamine is an inodilator that can be used to improve cardiac contractility in cardiogenic shock and PE; its use can be considered under BP strict monitoring because using it could cause a decrease in BP. The combination of both drugs could also be considered if the doctor deems it appropriate and only under dynamic monitoring that may include transthoracic
or transesophageal ultrasound. Inhaled nitric oxide has been shown to improve pulmonary function, but without achieving a benefit in mortality numbers.

**Extracorporeal Membrane Oxygenation**
Extracorporeal membrane oxygenation (ECMO) may be considered in critically ill patients with PE. Successful cases have been reported when it has been used in an arteriovenous modality in patients with high-risk PE or cardiac arrest, in order to provide cardiac and respiratory support; however, studies on this subject are few as they require a trained team and there is no consensus on when to initiate therapy (Murray 2021).

The summary of specific management and multiorgan support is presented in Figure 3.

**Recurrence Prevention**
Recurrent PE occurs in 7 to 30% of cases over 10 years, being more frequent in the first 12 months despite the use of oral anticoagulation and is more frequent in patients with cancer. The risk factors associated with recurrence are age, body mass index (BMI), male gender, active cancer, immobility of lower extremities, lupus anticoagulant, antiphospholipid antibodies, and protein S, C and antithrombin deficiencies (Heit et al. 2002).

**Duration of Anticoagulation**
Therapeutic anticoagulation should suffice with only 3 months if a provoked or transient risk factor has been identified (e.g. surgery, trauma, prolonged immobilisation, etc). The recurrence rate in these patients is 3%; however, in those patients at high risk of recurrence (e.g., active cancer, prolonged immobilisation), anticoagulation should be extended indefinitely and monitored for new thrombotic events, which can occur in up to 8% of cases. Active cancer, prolonged immobilisation should extend anticoagulation indefinitely and monitor for new thrombotic events, which can occur in up to 8% of cases, in addition to complications of anticoagulants such as haemorrhage (Konstantinides et al. 2019).

**Inferior Vena Cava Filter**
When there is a contraindication to pharmacological anticoagulation, an inferior vena cava filter may be indicated. This strategy has been associated with lower mortality despite associated complications such as an increased possibility of thrombotic events (like filter thrombosis), which can occur in up to 10% of cases, and DVT in up to 40% of cases. Its use in high-risk PE or combined with oral or parenteral anticoagulants is not recommended since it does not generate an added benefit (Yamamoto 2018).

**Conclusion**
PE is a serious disease associated with a high morbidity and mortality, which can occur in critically ill patients during hospitalisation. The recognition of this disease, its timely diagnosis and establishing an adequate treatment with multidisciplinary support can improve its prognosis.

**Conflict of Interest**
None.

---

For full references, please email editorial@icu-management.org or visit https://iii.hm/1d3b
Single Lumen Dual Port Nasogastric Feeding and Drainage Tube Designed for the ICU

- Designed to help simplify gastric drainage and enteral tube feeding through the use of one single tube for both operations.
- Compatible with most drainage/suction devices* and designed to ease fluid flow.
- Its Y-tube design with clamps facilitates tube handling and help prevent fluid leakage.
- Made of soft polyurethane with a rounded distal end to help promote patient comfort.

*Some incompatibilities may exist.

Watch the video to discover how to use COMPAT® DUALPORT
Emergencies in Malignant Haematology for the Intensivist

An overview of emergencies that are commonly seen in malignant haematology, side effects of novel therapies, and complications of allogeneic haematologic stem cell transplant.

Introduction
Critical illness is common in patients with haematologic malignancies. Recent data demonstrate that 14% of patients will require ICU admission within one year of their initial diagnosis, with the highest risk in acute leukaemia (Ferreyro et al. 2021). As cancer care, infectious disease practices and critical care management have evolved, ICU outcomes in this population have improved. Furthermore, critical illness is increasingly being recognised as part of the treatment pathway for a subset of patients receiving intensive therapies to achieve cure or sustained disease control. Given this, the current and future states of Oncologic Critical Care management for this population will require increased collaboration between intensivists and haemato-oncologists. While sepsis and respiratory failure are the most common admitting diagnoses, there are a range of disease- and treatment-specific complications that intensivists must be aware of to provide optimal care for these complex patients. This review will provide an overview of emergencies that are commonly seen in malignant haematology including hyperleukocytosis, leukostasis, tumour lysis syndrome, disseminated intravascular coagulation, neutropenic sepsis, hyper-viscosity syndrome, side effects of novel therapies, and complications of allogeneic haematologic stem cell transplant.

Epidemiology
The modern 1-year incidence of ICU admission after diagnosis of haematologic malignancies is 14% ranging from 7% for indolent lymphoma to 23% for acute myeloid leukaemia (AML) followed by aggressive non-Hodgkin’s lymphoma (18%) (Ferreyro et al. 2021). Half of this cohort are admitted within 30 days of diagnosis and the median time from diagnosis to admission in a large population based cohort study is 35 days (Ferreyro et al. 2021). As novel therapies increase as part of the standard of care, an increase in the incidence of critical illness will likely be seen.

Acute Myeloid Leukaemia with Hyperleukocytosis
Up to 20% of patients with acute myeloid leukaemia (AML) will present with an extreme elevation in their white blood cell count (WBC) known as hyperleukocytosis (Rollig et al. 2015; Ali et al. 2016). Generally defined by a WBC > 50-100 x 10^9/L, hyperleukocytosis is a medical emergency. Without rapid recognition and treatment, early mortality rates are high, with intracranial haemorrhage and respiratory failure as frequent causes of death (Marbello et al. 2008). Cytoreduction is the definitive treatment but excellent supportive care and prompt recognition of complications are essential. For patients who do not receive intensive chemotherapy, the mortality rate may exceed 50% at 30 days (Shallis et al. 2020).

The most concerning complications of hyperleukocytosis include leukostasis, tumour lysis syndrome (TLS) and disseminated intravascular coagulation (DIC) with the diagnostic features and management considerations outlined in Table 1. Leukostasis is a clinical diagnosis based on evidence of end-organ hypoperfusion in a patient with hyperleukocytosis. It results from occlusion of the microcirculation with endothelial damage and is much more common in AML than ALL due to the large size of the myeloid blasts (Porcu et al. 2000). Respiratory or neurologic symptoms are the most common clinical manifestations of leukostasis and may be the reason for ICU admission (Stahl et al. 2020).

Tumour Lysis Syndrome
Tumour lysis syndrome (TLS) results from the rapid breakdown of cancer cells and release of intracellular contents. It can occur either spontaneously or after initiation of cytoreductive therapies and may present clinically as acute kidney injury (AKI), arrhythmias, seizures, or sudden death. TLS can present in 25% of patients with AML and hyperleukocytosis, with similarly high incidence reported in the paediatric literature for ALL (Shallis et al. 2020; Stahl et al. 2020; Bewersdorf et al. 2020a; Truong et al. 2007). Patients with aggressive lymphomas or significant disease burden such as Burkitt lymphoma, lymphoblastic lymphoma, and DLBCL, T-cell lymphoma with elevated LDH, or bulky disease on CT are also at high risk (Jones et al. 2015). Risk
for death from TLS is highest in AML, with mortality rates that may approach 30% for patients hospitalised (Durani et al. 2017).

The approach to diagnosis and management are outlined in Table 1. In addition to administering uric acid lowering therapies and addressing the sequelae of acute kidney injury, the primary management is supportive with frequent monitoring.

All high-risk patients, or those that have already progressed to TLS, should receive rasburicase. Rasburicase is recombinant urate oxidase that leads to the breakdown of uric acid. This is in contrast to allopurinol which reduces uric acid formation and is appropriate when the TLS risk is low to moderate. IV fluids should be given to maintain adequate urine output, routine electrolyte replacement protocols should be avoided, and nephrology should be consulted for consideration of dialysis in the event of progressive AKI, acidosis, or electrolyte disturbances. Contrary to historical practices, there is no evidence for urinary alkalinisation, and diuretics should generally be avoided unless there is concern for volume overload.

<table>
<thead>
<tr>
<th>Complication</th>
<th>Diagnostic Features</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukostasis</td>
<td>Signs and symptoms of end-organ hypoperfusion (Rollig et al. 2015; Porcu et al. 2000): • Respiratory failure (tachypnoea, hypoxaemia, pulmonary haemorrhage) • Neurologic symptoms (decreased level of consciousness, delirium, visual disturbances, headache, and tinnitus • Bowel or limb ischaemia • Myocardial infarction Imaging features (Stefanski et al. 2016): • CXR: focal or diffuse opacities, pleural effusion. • Chest CT: interlobular septal thickening, consolidation, ground glass opacities.</td>
<td>Emergent cytoreduction should be arranged in consultation with a haematologist. Options include the following: • Hydroxyurea: - Oral medication that inhibits DNA synthesis - Used as a temporising measure prior to induction chemotherapy (Mamez et al. 2016) • Chemotherapy: - Intensive chemotherapy is the definitive management - Low-dose cytarabine may also be used to temporise at some institutions • Leukapheresis: - WBCs removed from the circulation with an apheresis machine, requires haemodialysis catheter - Rapid reduction in WBC but no proven benefit with regard to complications or morality (Bewersdorf et al. 2020b) - Avoid in APL due to risks associated with coagulopathy Supportive care: • Avoid RBC transfusions unless symptomatic anaemia • Hydration with IV crystalloids, avoid diuretics unless clinical evidence of volume-overload</td>
</tr>
<tr>
<td>Tumour Lysis Syndrome</td>
<td>TLS has both clinical and laboratory diagnostic criteria (Cairo and Bishop 2004): Clinical criteria (one or more): • Acute kidney injury: Creatinine ≥ 1.5x ULN • Seizure • Arrhythmia or sudden cardiac death Laboratory criteria (two or more): • Uric acid ≥476 μmol/l or 25% • Potassium ≥6.0 mmol/l or 25% • Phosphate ≥1.45 mmol/l or 25% • Calcium ≤1.75 mmol/l or 25%</td>
<td>Uric acid lowering therapies: • All high-risk patients, which includes hyperleukocytosis, should receive rasburicase regardless of the uric acid level on presentation - A fixed dose of 4.5g IV x 1 can be given with need for additional doses based on clinical response (Patel et al. 2017) - G6PD deficiency is a contraindication to rasburicase should be screened for prior to administration. Supportive care (Jones et al. 2015; Matuskiewics-Rowinska and Malyszko 2020): • Monitor electrolytes closely (i.e., Q6H to Q8H) • Administer IV crystalloids to maintain adequate urine output and avoid routine electrolyte replacement protocols. • Consult Nephrology early in the setting of hyperkalaemia, refractory fluid overload, severe acidosis, or severe hyperphosphatemia for consideration of renal replacement therapy.</td>
</tr>
<tr>
<td>Disseminated Intravascular Coagulation</td>
<td>Patients may present with a bleeding diathesis and/or thrombosis. DIC is characterised by the following abnormalities (Levi et al. 2009): • Elevated PT/PTT and d-dimer • Low fibrinogen • Schistocytes on peripheral smear</td>
<td>Coagulation parameters should be monitored frequently with administration of blood products to maintain the following: • Platelets &gt; 20-30 x 10⁹/L (50 x 10⁹/L in bleeding patients) • Fibrinogen greater &gt; 1-1.5g/dL • INR &lt; 1.5-2.0 Particular caution must be taken to monitor and aggressively treat coagulopathy in patients with APL.</td>
</tr>
</tbody>
</table>

Abbreviations: APL = acute promyelocytic leukaemia; CXR. = chest x-ray; CT = computed tomography; INR = international normalised ratio; IV = intravenous; PT = prothrombin time; PTT = partial thromboplastin time; ULN = upper limit of normal
Acute Promyelocytic Leukaemia

Acute promyelocytic leukaemia (APL) is a variant of AML that is seen in approximately 10-15% of cases (Tallman and Altman 2009). While APL is uncommon, it is important to be aware of it due to its unique complications and prognostic considerations. The molecular hallmark of APL is a translocation between chromosome 15 and 17 leading to the production of a the PML/RARA fusion gene. Clinically, patients present with cytopenia, coagulopathy, and bleeding and are considered to have high risk disease if the WBC is elevated (greater than 10x10⁹/L). While the overall outcomes for APL are excellent, 20-25% of patients may die in the first 30 days largely due to haemorrhagic complications with a significant portion of these deaths in the first week (Lehmann et al. 2017; Miclo et al. 2014). For patients who survive this initial period, long-term survival approaches 90%, underscoring the importance of excellent supportive care (Coombs et al. 2015; Yilmaz et al. 2021).

When APL is suspected, treatment with all-trans retinoic acid (ATRA) should be started emergently as per the treating haematologist even if the diagnosis is not confirmed. Treatments administered for APL in addition to ATRA include arsenic trioxide (ATO) and chemotherapy. The primary consideration for the intensivist is monitoring for and aggressively treating coagulopathy. Coagulation parameters should be checked frequently, and blood products should be administered to keep platelets greater than 30 x 10⁹/L (50 x 10⁹/L in bleeding patients), fibrinogen greater than 1-1.5g/dl, and INR less than 1.5 (Sanz et al. 2019). After treatment is initiated, approximately 25% of patients may develop ATRA differentiation syndrome which manifests as fever, hypotension, respiratory failure with interstitial infiltrates, AKI, pleural or pericardial effusions, and peripheral oedema (Montesinos et al. 2009). The treatment is dexamethasone 10mg IV Q12H which should be started at the first sign of any symptoms (Sanz et al. 2019). Prophylactic steroids may also be considered in patients being started on ATRA, particularly in the setting of an elevated WBC. This decision should be discussed with the malignant haematology team.

Febrile Neutropenia and Neutropenic Sepsis

Febrile neutropenia (FN) is defined as a temperature ≥ 38.3°C or a temperature ≥ 38.0°C lasting more than 1 hour with an absolute neutrophil count (ANC) < 0.5 x 10⁹/L (Freifeld et al. 2011). Following induction chemotherapy, patients with acute leukaemia may develop profound, prolonged neutropenia with an ANC < 0.1 x 10⁹/L lasting over 1 week. This places them at high risk for infection and neutropenic sepsis. Patients with leukaemia are at the highest risk of death from FN among all patients with cancer with invasive fungal infections, candidaemia, bacteraemia, pneumonia, and the presence of comorbidities associated with a further increase in mortality (Kuderer et al. 2006). While patients with lymphoma may develop FN, the degree and duration of neutropenia are typically less than that seen in acute leukaemia, decreasing the overall risk of severe infection. However, it is important to discuss the anticipated course based on the underlying malignancy and therapy received with the patient’s haemat-oncologist.

The core management principles for sepsis apply to neutropenic patients including early recognition, urgent administration of antibiotics, source control, fluid resuscitation as needed, and haemodynamic support to maintain end-organ perfusion (Kochanek et al. 2019). However, the diagnostic work-up to determine the source is frequently more extensive and empiric antibiotic coverage is broader due to different risk factors in the setting of profound immunosuppression (Figure 1). Bacteraemia from central lines, gut translocation of organisms, and pneumonia are common causes of infection in the setting of neutropenia. Granulocyte colony stimulating factor (GCS-F) may be considered as an adjunctive treatment to reduce the duration and severity of neutropenia and can be discussed with oncology (Mhaskar et al. 2014). However, there is also concern that GCS-F may precipitate or worsen respiratory failure during neutrophil recovery (Mignard et al. 2019).

One specific aetiology of FN that is important to consider in any patient with gastrointestinal symptoms is neutropenic enterocolitis (NE). The diagnosis is based on the presence of abdominal pain and bowel wall thickening of more than 4mm on CT in a patient with FN (Gorschluter et al. 2005). The initial management is supportive with bowel rest, fluid resuscitation, and broad-spectrum antibiotics. C. difficile infection should also be ruled out. Consideration should be given to empiric antifungal coverage as high rates of fungal infection have been reported in critically ill patients with NE, particularly when there is small bowel involvement on CT (Ducaeu et al. 2019). Surgical management is generally reserved for complications such as bowel perforation or necrosis, uncontrolled bleeding, or abscess formation (Rodrigues et al. 2017). Early surgery consultation is warranted in critically ill patients (Saillard et al. 2018).

Superior Vena Cava Syndrome

Patients with lymphoma and bulky mediastinal disease or lymph node involvement are at risk for developing superior vena cava (SVC) syndrome. Progressive SVC obstruction from exterior compression, infiltration, or thrombosis leads to decreased venous drainage into the right atrium and corresponding symptoms of increased venous pressure including oedema of the face and arms, dyspnoea, cough, and development of vascular collaterals in the upper chest. In severe cases,
symptoms of airway or cerebral oedema may develop, and rarely, patients may have haemodynamic collapse. The best test to confirm the diagnosis is CT venogram, with MRI as another option (Friedman et al. 2017). However, care must be taken to ensure patients are able to safely lay flat as compressive symptoms may significantly worsen in the supine position.

The major considerations for the intensivist surround airway management and haemodynamic support. Due to the risk of airway collapse from mediastinal compression on induction of anaesthesia and airway oedema from venous engorgement, an airway expert should be involved during intubation. Awake fiberoptic intubation should be performed by an experienced provider with the head of the bed in an upright position (Chaudhary et al. 2012).

To maintain preload, IV fluids should be given via lower extremity access with vasopressors as needed to achieve an adequate mean arterial pressure. In cases of severe airway compromise where intubation is not possible, extracorporeal life support (ECLS) as a bridge to therapy can be considered (Leow et al. 2021).

In the case of life-threatening symptoms, endovascular stenting is an effective first-line treatment associated with minimal complications (Lanciego et al. 2009). Catheter-directed thrombolysis can also be performed if thrombosis is contributing to the obstruction (Rachapalli and Boucher 2014). If the diagnosis is not previously known, urgent biopsy should also be arranged. However, if safe to do so, decisions regarding stenting should be deferred until a definitive management plan is discussed with the malignant haematology team as chemotherapy and/ or radiation may also be effective therapy.

**Hyperviscosity Syndrome**

Hyperviscosity syndrome is an emergency that results from elevated levels of monoclonal protein in the blood and can be life-threatening if not promptly recognised and treated. It is most commonly seen in Waldenström’s macroglobulinaemia (WM) which is a rare subtype of non-Hodgkin lymphoma (NHL). In WM, there is abnormal production of monoclonal IgM protein leading to a rise in serum viscosity which is the primary indication for treatment in 17% of patients (Dimopoulos and Kastritis 2019). Hyperviscosity syndrome can also be seen in a small proportion of patients with multiple myeloma (Weaver et al. 2020).
Clinical Haematology
Coagulation, Anaemia and Malignant Haematology

Tuesday 30 November, 2021 @ 16:00 CET

REGISTER NOW

Prof Jean-Louis Vincent
Professor | Department of Intensive Care | Erasme Hospital | Université libre de Bruxelles | Brussels, Belgium | Editor-in-Chief | ICU Management & Practice

Moderator
Once serum viscosity rises above 4 centipoise with the presence of a monoclonal protein, patients may become symptomatic with mucocutaneous bleeding, neurologic symptoms, visual disturbances, fatigue, and generalised malaise (Crawford et al. 1985; Castillo et al. 2016). In severe cases, permanent vision loss, coma, and seizures may occur. Fundoscopic exam is helpfully diagnostically with the presence of dilated and tortuous veins, haemorrhages, papilledema, and exudates supportive of the diagnosis (Stone and Bogen 2012). If serum viscosity testing is not available, the immunoglobulin level can be used as a substitute. Concern for hyperviscosity is increased with IgM greater than 3 g/dL, IgG greater than 4 g/dL, or IgA greater 6 g/dL (Mehta and Singhal 2003).

Therapeutic plasma exchange (TPE) to reduce IgM levels is the primary treatment and should be instituted when clinical suspicion is high, even in the absence of serum viscosity testing. While this is being arranged, care should be taken to avoid any treatments that may increase plasma viscosity such as RBC transfusions. Plasmapheresis is generally continued to maintain serum viscosity below the level that results in symptoms, which may vary between individuals (Stone and Bogen 2012). Chemotherapy to treat the underlying disease is the definitive management. However, caution must be maintained in patients receiving rituximab for WM as it may result in an increase in IgM levels in a proportion of patients requiring consideration for pre-emptive TPE (Weaver et al. 2006).

Side-Effects of Novel Therapies
Treatment of haematologic malignancies is rapidly changing with increasing use of novel therapies which leverage the immune system to eliminate cancer cells. Two of these immuno-therapies: immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T-cells, may lead to severe and reversible side effects that can result in critical illness.

ICIs are primarily used in solid tumours but pembrolizumab, which is a monoclonal antibody against the programmed death-1 (PD-1) receptor, is approved for Hodgkin lymphoma and primary mediastinal large B-cell lymphoma (Twomey et al. 2021). ICIs allow the patient’s T-cells to target cancer by blocking checkpoints in the immune response. However, this upregulation of the immune system may result in side-effects known as immune-related adverse events (irAEs), which can affect any organ system and may lead to death in severe cases (Wang et al. 2018).

<table>
<thead>
<tr>
<th>Complication</th>
<th>Presentation</th>
<th>Treatment</th>
</tr>
</thead>
</table>
| Immune-mediated adverse events (iRAEs)            | Any organ may be involved but the most relevant presentations for critical care include the following:  
• Pneumonitis, myocarditis, encephalitis, hepatitis, colitis  
Severity: Graded on a scale of 1-4 with specific criteria for each organ system.  
Timing: Weeks to months after starting an immune checkpoint inhibitor.  
For grade 3 or 4 reactions, the immune checkpoint inhibitor is held and might be permanently discontinued.  
First-line treatment = steroids with some conditions requiring pulse-dosing.  
Need for additional immunosuppression depends on underlying organ involvement and steroid response but may include infliximab, IVIG, MMF, azathioprine, and cyclophosphamide. |
| Cytokine Release Syndrome (CRS)                   | Presentation may range from non-specific symptoms such as fever, shortness of breath, tachycardia, rash, headache and generalised malaise with shock, multi-organ failure, ARDS, and DIC in severe cases.  
Severity: Graded on a scale of 1-4  
Timing: Highest risk in first week following infusion  
Tocilizumab, an IL-6 monoclonal antibody, is the first line treatment.  
• Should be administered in all Grade 3 or 4 CRS  
• May be considered in Grade 1 or 2 CRS  
Steroids may be administered in conjunction with tocilizumab in higher grades of CRS or when it does not respond to tocilizumab. |
| Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) | Symptoms include fatigue, aphasia, tremor, and apraxia with altered level of consciousness and coma in severe cases. Dysgraphia is also a prominent feature.  
Timing: Onset is typically around the same time as CRS  
Steroids are first line therapy for ICANS.  
When both CRS and ICANS are present, tocilizumab and steroids are given together. |
In CART T-cell therapy, the patient’s T-cells are collected and genetically modified to recognise and target antigens on cancer cells. This therapy has been approved for use in a variety of haematologic malignancies including several types of lymphoma, ALL, and multiple myeloma. Leveraging the immune response in this way can lead to an inflammatory cascade known as cytokine release syndrome (CRS), which may lead to shock and multiorgan failure in severe presentations. Neurologic sequelae known as immune effector cell-associated neurotoxicity syndrome (ICANS) may also occur either in conjunction with or independently from CRS.

An overview of the presentation and treatment of iRAEs, CRS, and ICANS is outlined in Table 2. Severity grades of CRS and ICANS have been defined in the literature and many centres with CART programmes have established guidelines surrounding thresholds for initiation of pharmacologic treatments to blunt inflammation (eg. corticosteroids) and thresholds for ICU admission. Decisions surrounding treatment should be made following a multidisciplinary discussion with the oncology team. It is also important to have a low threshold to treat empirically for sepsis, and to rule out other mimickers of CRS such as haemophagocytic lymphohistiocytosis (HLH), and TLS.

Complications Following Allogeneic Haematopoietic Stem Cell Transplantation

Although outcomes have improved overall in recent decades for critically ill patients with haematologic malignancy, ICU mortality among patients who have undergone an allogeneic haematopoietic stem cell transplant (HSCT) remains high (Darmon et al. 2019). There are a range of complications that may result in critical illness and are important to have in the differential diagnosis with respiratory failure as the most common reason for ICU admission (Bayraktar et al. 2013; Kew et al. 2006). The post-transplant course is generally divided into the pre-engraftment stage (day 0–30), early post-engraftment stage (day 31–100) and late post-engraftment stage (after 100 days) with variable risks in each time frame. If a patient presents with critical illness after having undergone transplantation, understanding these three distinct timepoints is critical to understanding the mechanism of immunosuppression they are exposed to. This will inform which potential infectious organisms they are susceptible to as well as help develop the non-infectious differential. The major infectious considerations in each of these periods are outlined in Figure 2. Although patients may develop respiratory failure related to these infectious causes, there are a range of non-infectious aetiologies for respiratory failure in this population (Table 3). Close communication with the haemato-oncology team and oncologic-infectious disease services can help guide identifying cause and empiric management.

### Table 2

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Risks</th>
<th>Types of Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Engraftment (Day 0–30)</td>
<td></td>
<td>•  Primary immunodeficiency = severe neutropenia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•  Mucositis, indwelling lines</td>
</tr>
<tr>
<td>Early Post-Engraftment (Day 31–100)</td>
<td>•  Acute GVHD and related immunosuppression</td>
<td>•  Bacterial infections are most common (gram positive or gram negative)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•  HSV, CMV, PJP and aspergillus are commonly described</td>
</tr>
<tr>
<td>Late Post-Engraftment (After 100 days)</td>
<td>•  Chronic GVHD and related immunosuppression</td>
<td>•  Risk for encapsulated bacteria is increased: S. pneu, H. flu, N. meningitidis, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•  VZV is common</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•  Risk of HSV, CMV, PJP, aspergillus, and HHV6 remains</td>
</tr>
</tbody>
</table>

Figure 2: Infectious risks post-allogenic stem cell transplant stratified by time from transplant (Tomblyn et al. 2009; Sahin et al. 2016; Hiemenz et al. 2009).

Abbreviations: CMV = cytomegalovirus; GVHD = graft versus host disease; HHV6 = human herpes virus 6; HSV = herpes simplex virus; PJP = pneumocystis jiroveci.
In addition to infectious and respiratory complications, other post-transplant complications to be aware of include acute graft versus host disease (GVHD), veno-occlusive disease (VOD), and neurologic complications. Acute GVHD traditionally occurs in the first 100 days post-transplant and most commonly manifests with skin involvement, gastrointestinal symptoms, and hyperbilirubinaemia although other organs may be involved. The mainstay of treatment is steroids with the potential addition of other immunosuppressive agents or the kinase inhibitor ruxolitinib in refractory disease (DiMaggio 2020). VOD, also called sinusoidal obstructive syndrome (SOS) is caused by obstruction of the hepatic venules and sinusoids in the liver. The aetiology is felt to be due to hepatic endothelial damage from transplant conditioning medications. VOD presents with abdominal pain, hepatomegaly, jaundice, ascites, weight gain and thrombocytopenia that typically presents in the pre-engraftment phase. Definitive diagnosis is often made by biopsy as imaging techniques are not sufficient. Treatment includes supportive care (paracentesis, monitoring fluid balance) with the addition of defibrotide in severe cases. For refractory disease which carries a significant mortality risk, steroids, transhepatic portosystemic shunt (TIPS), and liver transplantation may be considered and should involve the gastroenterology or hepatology team at an early stage (Senzolo et al. 2007). Finally, patients may also develop altered level of consciousness which can be related to infectious encephalities, drug toxicity (e.g., fludarabine neurotoxicity), intracranial haemorrhage, posterior reversible encephalopathy syndrome, neuro-GVHD, post-transplant lymphoproliferative disorder, or progressive multifocal leukencephalopathy, among others (Pruitt et al. 2013).

### Table 3: Pulmonary Complications Following Allogenic Hematopoietic Stem Cell Transplantation (Haider et al. 2020; Soubani and Pandya 2010; Chi et al. 2013).

<table>
<thead>
<tr>
<th>Typical Timing</th>
<th>Complication</th>
<th>Presentation and Treatment</th>
</tr>
</thead>
</table>
| Early          | Peri-Engraftment Respiratory Distress Syndrome (PERDS) | • Bilateral infiltrates and hypoxaemia that develops during neutrophil recovery. It can manifest as hypoxaemia with pulmonary infiltrates, fever, rash, diarrhoea, hepatic or renal impairment.  
• Treatment: Steroids |
|                | Diffuse Alveolar Haemorrhage | • Infiltrates on chest x-ray, cough, and hypoxaemia with no identifiable infection. Haemoptysis may be absent.  
• Diagnosed based on serial BALs demonstrating increasing RBC count.  
• Treatment: Supportive with consideration for steroids. |
| Subacute       | Idiopathic Pneumonia Syndrome | • Diffuse alveolar injury with no identifiable infectious source. Can be rapidly progressive and may require lung biopsy for diagnosis.  
• Treatment: Largely supportive. Steroids are frequently used although strong evidence is lacking TNF-alpha inhibitors may also be considered. |
|                | Bronchiolitis Obliterans Organising Pneumonia (BOOP) | • Fever, cough, shortness of breath with patchy infiltrates, ground glass or nodular opacities.  
• May require lung biopsy for diagnosis.  
• Treatment: Steroids |
| Late           | Bronchiolitis obliterans | • Progressive respiratory symptoms (cough, shortness of breath, wheeze) with airflow obstruction on spirometry.  
• Treatment: Steroids and immunosuppression but typically follows progressive course. |

### Conclusion

Patients with haematologic malignancies presenting with critical illness represent a unique population with specific syndromes. Early identification of aetiologies of critical illness and prompt initiation of appropriate critical care support is essential to their improved outcomes. Given their complexity, a multidisciplinary approach to their management with close collaboration between haemo-oncology and critical care is needed.

### Conflict of Interest

None.

### References


For full references, please email editorial@icu-management.org or visit https://iii.hm/1d5q
See you online at euroanaesthesia 2021! #EA21

ENGAGING MINDS, EMPOWERING CHANGE

Join us from the comfort of your own home – Europe’s biggest congress on anaesthesiology and intensive care is now fully virtual. Find more info and register at www.euroanaesthesia2021.org
CAR-T Cell Therapy – What An Intensivist Should Know

CAR-T therapy is a promising treatment for B-cell malignancies but is also associated with toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Frequent monitoring, timely recognition and prompt management in ICU are paramount to ensure good outcomes.

Introduction
Chimeric antigen receptor (CAR) T-cell therapy has been hailed as a much-awaited treatment for patients with relapsed/ refractory (r/r) haematological malignancies. CARs are synthetic receptors consisting of an extracellular domain that can bind specifically to a target molecule expressed on the surface of tumour cells, a trans membrane domain, and an intracellular signalling and costimulatory domain that provides an activation signal to T cells, when the extracellular domain is engaged with its target.

CD19 was selected as an attractive therapeutic target as it is a transmembrane glycoprotein required for normal B-cell development in humans and it is expressed in over 95% of B-cell malignancies. Addition of a costimulatory domain to the CAR T construct (second-generation CAR) promoted T-cell proliferation and persistence, but also increased the risk of cytotoxicity. Several CAR T products are approved in Europe and the United States for acute lymphoblastic leukaemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma and most recently multiple myeloma (Berdeja et al. 2021).

After leukapheresis of autologous T lymphocytes, genetic information for the CAR is transduced into the cells normally by means of viral vectors. The patients then receive lymphocyte-depleting chemotherapy as preparation. Once infused, CAR T cells recognise tumour cells expressing the target antigen. They expand locally and eliminate tumour cells by contact-dependent cytotoxicity (June and Sadelain 2018). Each activated CAR T cell releases cytokines and activates other components of the immune system, preventing tumour recurrence by promoting immune surveillance. Time from CAR T collection to patient infusion is approximately 3 weeks but often closer to 4 weeks. The leukapheresed cells are transferred back to the centre for infusion, which typically happens as a single infusion, with varying infusion protocols depending on centre, sponsor and product.

Clinical trial data report overall response rate (ORR) between 54–83% and complete response (CR) rate between 40–58% for aggressive B-cell lymphoma, depending on the CAR product used (Tang and Nastoupil 2021). ‘Real-world’ outcomes of CD19 CAR T cell therapy for aggressive r/r non-Hodgkin lymphoma have response and survival rates that are comparable to the impressive results from pivotal trials. These results become even more pertinent since they demonstrate the efficacy of CAR T therapy in patients who would have been excluded from clinical trials.

Common Toxicities
As CAR T cell therapies become more widely used, recognition of their unique toxicities, distinct from those seen with other immune effector therapies, is of utmost importance. The two most common toxicities after CAR T cell infusion are the cytokine-release syndrome (CRS) and neurotoxicity, recently renamed immune effector cell-associated neurotoxicity syndrome (ICANS) (Lee et al. 2019). Their true incidence, severity and need for support are unclear, as published studies have used different CAR products and
different grading systems. Direct comparison of toxicities has been made easier after the publication of a consensus paper by the American Society for Transplantation and Cellular Therapy (ASTCT) in 2019 (Lee et al. 2019). The ASTCT consensus grading for CRS and ICANS is presented in Table 1.

### Cytokine Release Syndrome

Activation and proliferation of T cells after engagement with the CAR ligand result in secretion of cytokines and proinflammatory signals from the activated lymphocytes but also other immune cells. In particular, Interleukin (IL)-6 and interferon-γ (IFN-γ) play a decisive role in initiation of this systemic inflammatory response that in extreme cases can result in fluid-refractory hypotension and other organ damage. The range of symptoms varies but the presence of fever is essential for the diagnosis (Table 1). In clinical trials, CRS of any grade was observed between 58–93%, with 13–22% developing grade 3 or higher CRS. Despite differences in the baseline characteristics among patients, similar rates of toxicities were observed in the real-world data (Tang and Nastoupil 2021). Risk of CRS is influenced by pretreatment factors, such as tumour burden and ALL as the underlying disease, and treatment-related factors such as the costimulatory domain of the CAR, dose of CAR T cells infused and regimen of lymphodepletion.

Treatment of CRS varies between institutions and is mainly supportive. Enhanced monitoring, regular antipyretics, fluids and broad-spectrum antibiotics are suggested for grade 1 CRS. When grade 1 symptoms persist or progress to grade 2, treatment with tocilizumab, an IL-6 receptor antagonist, is recommended (8mg/kg; maximum of 3 doses and 800mg/dose). Corticosteroids are considered if symptoms do not subside after tocilizumab administration or if there is progression to grade 3. We advocate the use of intravenous dexamethasone (up to 10mg QDS), as the corticosteroid of choice. In our institution, all patients with grade 2 CRS and/or ICANS are followed up with our critical care outreach team (CCOT). Severe cases of CRS (≥ grade 3) are admitted to the intensive care unit (ICU) and may require additional supportive measures, such as vasopressor agents for hypotension and supplemental oxygen or intubation for hypoxaemia. Refractory CRS can be treated empirically with further immunosuppression (methylprednisolone 1g/day, anakinra, siltuximab).

<table>
<thead>
<tr>
<th>CRS parameter</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever*</td>
<td>Temperature ≥ 38°C</td>
<td>Temperature ≥ 38°C</td>
<td>Temperature ≥ 38°C</td>
<td>Temperature ≥ 38°C</td>
</tr>
<tr>
<td>With</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>None</td>
<td>Not requiring vasopressors</td>
<td>Requiring one vasopressor with/without vasopressin</td>
<td>Requiring multiple vasopressors (excluding vasopressin)</td>
</tr>
<tr>
<td>And/or†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoxia</td>
<td>None</td>
<td>Requiring low-flow nasal cannula‡ or blow-by</td>
<td>Requiring high-flow nasal cannula, facemask, nonrebreather mask or Venturi mask</td>
<td>Requiring positive pressure (e.g. CPAP, BiPAP, intubation and mechanical ventilation)</td>
</tr>
</tbody>
</table>

Table 1: Consensus grading for Cytokine Release Syndrome

* Fever is defined as temperature ≥38°C not attributable to any other cause. In patients who have CRS then receive antipyretic or anticytokine therapy such as tocilizumab or steroids, fever is no longer required to grade subsequent CRS severity. In this case, CRS grading is driven by hypotension and/or hypoxia.

† CRS grade is determined by the more severe event: hypotension or hypoxia not attributable to any other cause. For example, a patient with temperature of 39.5°C, hypotension requiring 1 vasopressor, and hypoxia requiring low-flow nasal cannula is classified as grade 3 CRS.

‡ Low-flow nasal cannula is defined as oxygen delivered at ≤6L/minute. Low flow also includes blow-by oxygen delivery, sometimes used in pediatrics. High-flow nasal cannula is defined as oxygen delivered at >6L/minute. Source: Lee et al 2019.

### Immune Effector Cell–Associated Neurotoxicity Syndrome

The exact pathophysiology behind the neurotoxicity observed after CAR T cell therapy is not fully understood. Systemic inflammation appears to also be important in ICANS but less so than in CRS, with IL-1 playing a more significant role than IL-6. The presence of pro-inflammatory cytokines has been demonstrated in the cerebrospinal fluid (CSF) and is linked with increased endothelial activation. It is unclear whether elevated levels of cytokines in CSF are a consequence of the blood-brain barrier disruption or a result of CAR T cell engagement with CD19-expressing cerebral endothelial cells. ICANS symptoms often occur a few days follow-
ing CRS but can manifest independently. They range from mild word-finding difficulties, aphasia, toxic encephalopathy, impaired cognitive skills, altered consciousness, or hallucinations to more devastating symptoms including seizures, motor weakness, and cerebral oedema (Table 2) (Tang and Nastoupil 2021).

Management of low grade ICANS is based on increased frequency of neurological observations using the Immune Effector Cell-Associated Encephalopathy (ICE) score (Table 3) and administration of antiepileptics in case of seizures. Tocilizumab is ineffective, unless there is concurrent CRS, whereas corticosteroids are the immunomodulator of choice. In our institution, we use intravenous dexamethasone (up to 10mg QDS), followed by methylprednisolone 1g/day for refractory symptoms. Close monitoring by the CCOT, admission to ICU when ICANS ≥grade 3 and close collaboration with neurology and neurosurgery in severe cases are standard practice. When managing neurotoxicity, it is important to exclude alternative causes, such as infection, stroke or haemorrhage. The choice of diagnostic modalities (e.g., magnetic resonance vs. computer tomography imaging, electroencephalogram, cerebrospinal fluid analysis) is tailored to the severity and nature of symptoms.

<table>
<thead>
<tr>
<th>Neurotoxicity Domain</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE score*</td>
<td>7 to 9</td>
<td>3 to 6</td>
<td>0 to 2</td>
<td>0 (patient is unrousable and unable to perform ICE)</td>
</tr>
<tr>
<td>Depressed level of consciousness†</td>
<td>Awakens spontaneously</td>
<td>Awakens to voice</td>
<td>Awakens only to tactile stimulus</td>
<td>Patient is unrousable or requires vigorous or repetitive tactile stimulus to arouse. Stupor or coma</td>
</tr>
<tr>
<td>Seizure</td>
<td>N/A</td>
<td>N/A</td>
<td>Any clinical seizure focal or generalised that resolves rapidly; or nonconvulsive seizures on EEG that resolve with intervention</td>
<td>Life threatening prolonged seizure (&gt; 5 mins); or repetitive clinical or electrical seizures without return to baseline in between</td>
</tr>
<tr>
<td>Motor findings‡</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Deep focal motor weakness such as hemiparesis or paraparesis</td>
</tr>
<tr>
<td>Elevated ICP/cerebral oedema</td>
<td>N/A</td>
<td>N/A</td>
<td>Focal/local oedema on neuroimaging§</td>
<td>Diffuse cerebral oedema on neuro-imaging; decortic or decerebrate posturing; or cranial nerve VI palsy; or papilloedema; or Cushing’s triad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain</th>
<th>Assessment</th>
<th>Point(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation*</td>
<td>Orientation to year, month, city, hospital</td>
<td>4</td>
</tr>
<tr>
<td>Naming</td>
<td>Ability to name 3 objects e.g. point to clock, pen, button</td>
<td>3</td>
</tr>
<tr>
<td>Following commands</td>
<td>Ability to follow simple commands e.g. ”Show me 2 fingers” or ”Close your eyes and stick out your tongue”</td>
<td>1</td>
</tr>
<tr>
<td>Writing</td>
<td>Ability to write a standard sentence e.g. ”Our national bird is the bald eagle”</td>
<td>1</td>
</tr>
<tr>
<td>Attention</td>
<td>Ability to count backwards from 100 by 10</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Consensus grading for Immune Effector Cell-Associated Neurotoxicity Syndrome
ICANS grade is determined by the most severe event (ICE score, level of consciousness, seizure, motor findings, raised ICP/cerebral oedema) not attributable to any other cause; for example, a patient with an ICE score of 3 who has a generalized seizure is classified as grade 3 ICANS.
N/A indicates not applicable.
* A patient with an ICE score of 0 may be classified as grade 3 ICANS if awake with global aphasia, but a patient with an ICE score of 0 may be classified as grade 4 ICANS if unrousable.
† Depressed level of consciousness should be attributable to no other cause (e.g., no sedating medication).
‡ Tremors and myoclonus associated with immune effector cell therapies may be graded according to CTCAE v5.0, but they do not influence ICANS grading.
§ Intracranial haemorrhage with or without associated oedema is not considered a neurotoxicity feature and is excluded from ICANS grading. Source: Lee et al 2019.

Table 3: Immune Effector Cell-Associated Encephalopathy score
Scoring: 10, no impairment; 7-9, grade 1 ICANS; 3-6, grade 2 ICANS; 0-2, grade 3 ICANS; 0 due to patient unarousable and unable to perform ICE assessment, grade 4 ICANS.
Source: Lee et al 2019.
Tips for the Intensivist

Consensus grading system

The new classification aimed to simplify and streamline the grading system, and has enabled comparison of outcomes and adverse events between CART T products. Its use is not without caveats, which become very important when assessing the severity of CRS/ICANS and hence the appropriate response.

For patients to be graded as level 3 of CRS, vasopressor use, with or without vasopressin is required. However, there is significant difference between patients that receive vasopressin and those that don’t, as in many institutions use of vasopressin signifies catecholamine-resistant/refractory shock. These patients will be at risk of significant mortality and expedited ICU admission and initiation of rescue therapies should be escalated rapidly. Furthermore, the lack of differentiation in the consensus grading system between patients on low-dose single vasopressor vs high dose noradrenaline plus high dose vasopressin should be noted. Currently, both patients are classified as grade 3 and their treatment includes varying doses of steroids. Early identification of deteriorating patients (irrespective of the grade) should lead to timely escalation of treatment and hopefully prevent further deterioration.

The same caveats need to be considered regarding oxygen requirements for patients with grade 3 and 4 CRS. Those requiring high-flow nasal cannula, which is defined as oxygen delivered at $> 6 \text{ L/min}$, are classified as grade 3, whereas patients in need of positive pressure ventilation (whether invasive or not) are grade 4. However, no mention is made of high flow nasal cannula oxygen (HFNCO) therapy, the relatively novel strategy of respiratory support that can supply high flow (up to $60 \text{ L/min}$) of heated and humidified gas with an adjustable inspiratory fraction of oxygen up to 100%, through a dedicated nasal cannula. Under the consensus classification, a patient requiring 100% via HFNCO is considered less critical than one on 40% CPAP, with the potential delays in escalating interventions mentioned above.

Differential diagnosis

Patients treated with anti CD19 CART for B-cell haematologic malignancies are at high risk of infection due to prior cytotoxic treatments, development of CRS, the risk for prolonged cytopenia and B-cell aplasia with associated hypogammaglobulinemia. Approximately 20–40% of patients develop infections within the first month after CART therapy despite antimicrobial prophylaxis, with bacterial and viral microorganisms being the most common culprit, followed by fungal infections (Hill et al. 2018). Since microbiologically documented infection at admission to ICU has been associated with increased mortality (Azoulay et al. 2021), diagnosing infection is critical and extensive diagnostic workup should be carried out during ICU admission. Despite that, differentiating CRS from sepsis can be very challenging and empirical antibiotics should always be started, especially since laboratory tests like CRP become uninterpretable after administration of tocilizumab.

Limitation of life-sustaining treatment

CART therapy has significantly improved the prognosis of patients with r/r lymphomas, without which their median survival would not exceed 6 months. The ICU and hospital mortality of patients treated with CART were reported as 5.8% and 14.9% respectively (Azoulay et al. 2021), lower than those quoted for patients with haematological malignancies admitted in ICU without having received CART cells. Nonetheless, and with the expected extension of the therapy in other types of haematological but also solid tumours, the number of patients being treated and hence developing toxicities and requiring ICU will increase. A number of these patients will be critically ill, with a proportion not responding to CART therapy, and continuing to have limited life expectancy despite aggressive treatment. Deciding who will benefit from continuation of ICU treatment is difficult, as response cannot be assessed until 3–4 weeks post infusion whereas the toxicities appear hours or days post therapy. Close collaboration between intensivists and haematologists, as well as open communication with and expectation management of patients and their families are paramount to ensure that treatment is administered appropriately and in accordance with patient wishes.

Take-Away Messages

• CART therapy prolongs survival in patients with end-stage B-cell malignancies.
• Common toxicities include Cytokine Release Syndrome (CRS) and Immune effector Cell-Associated Neurotoxicity Syndrome (ICANS).
• Treatment for CRS includes the IL-6 receptor antagonist, tocilizumab and corticosteroids.
• Tocilizumab is not the treatment for ICANS; corticosteroids are first-line treatment.
• Higher grade toxicities should be managed in ICU.
• Close collaboration between intensivists and haematologists is necessary to ensure that treatments are administered according to patient wishes.

Conflict of Interest

Victoria Metaxa and Tasneem Pirani have received speaker fees from Kite/Gilead. Neeraj Singh and Rohit Saha have no conflict of interest.

References

Azoulay E, Castro P, Maamar A et al. (2021) Outcomes in patients treated with chimeric antigen receptor T-cell therapy who were admitted to intensive care (CARTTAS): an international, multicentre, observational cohort study. Lancet Haematol, 8, e355-e364.

For full references, please email editorial@icu-management.org or visit https://iii.hm/1d7u
Nutritional Care For Patients With COVID-19 Requiring Intensive Care

The worldwide pandemic of COVID-19 continues to impact all aspects of intensive care unit (ICU) management, including nutritional care (Minnelli et al. 2020). Nutritional guidelines based on expert opinions have been rapidly released and endorsed by professional societies of nutritionists or dieticians. These recommendations were formulated in the absence of interventional studies specifically dedicated to patients admitted in an ICU with COVID-19 and are largely based on existing guidelines for nutrition care in critically ill patients without COVID-19 as well as expert consensus based on clinical characteristics of COVID-19. Many different aspects of nutrition care are addressed (Figure 1). A recent summary review of the guidelines available in English was published in August 2021 which discusses the following issues (Chapple et al. 2021):

### Nutrition Risk Screening

An assessment of nutrition risk is recommended by most guidelines, using validated tools combining anthropometric, clinical and lab data. The recommended tools to assess nutrition risk vary between guidelines, as a reflection of the differences of local practices.

In addition to the scores given by nutrition risk tools, extreme values of body mass index (BMI) are associated with increased morbidity and mortality. A J-shaped curve linking BMI with in-hospital mortality rate have been reported (Huang et al. 2020). Obesity is associated with a respiratory insufficiency likely exacerbated by a COVID-19 pneumonitis or respiratory complication that may increase the need for ventilatory support and hospital stay (Chetboun et al. 2021). The association between obesity and higher mortality has been reported by some (Gao et al. 2021; Du et al. 2021; Hendren et al. 2021), but not all investigators (Ullah et al. 2021; Deng et al. 2021). Interestingly, the abundance of ACE (angiotensin converting enzyme)-2 receptors in the adipose tissue can explain the high prevalence of severe forms of COVID-19 in obese patients, as a result of the prolonged residence of SARS-CoV-2. In particular, the amount of visceral fat has been reported as a risk factor for poor outcome (Huang et al. 2020; Földi et al. 2021). From a nutritional perspective,
there is no reason to manage obese patients differently than non-obese. The adjusted weight is recommended to calculate the nutritional intakes (Singer et al. 2019).

A potential association between a low BMI and mortality of patients hospitalised for COVID-19 has been less extensively scrutinised (Caccialanza et al. 2021; Ochoa et al. 2020). Underweight and especially malnourished patients facing an acute inflammation such as COVID-19 can experience more frequent complications related to refeeding syndrome, muscle weakness and immune deficiency. Older age, male gender and chronic diseases (with or without inflammatory component) are known risk factors for both malnutrition (Cederholm et al. 2019), and poor outcome after a COVID-19 infection. Furthermore, a greater muscle mass is associated with successful extubation, shorter ICU length of stay and decreased hospital mortality (Damanti et al. 2021).

Nutrition Requirements and Prescriptions

The slow and progressive delivery of energy and protein is recommended by all guidelines, implying that the target should be achieved by 5-7 days after admission. A typical course of energy intake recorded during the ICU stay of a cohort of patients is displayed in Figure 2 (Hoyois et al. 2021).

Energy

Persistent hypermetabolism reflected by high energy expenditure has been reported (Whittle et al. 2020; Niederer et al. 2021) during prolonged stays in an ICU, except during the period of muscle paralysis (Karayannis et al. 2021).

However, the measurement of energy expenditure by indirect calorimetry carries a risk of staff exposure to the virus, potential spread of disease, and/or workforce related demands. Hence, only one set of guidelines recommends that indirect calorimetry is used where safely available (Barazzoni et al. 2020), whereas three other sets of guidelines recommend against the use of indirect calorimetry (Martindale et al. 2020; Chapple et al. 2020; Campos et al. 2020). Most guidelines provide recommendations on the prescription of energy using a predictive equation. As high doses of sedative agents can be required in ventilated patients, the amount of non-nutritional calories from propofol and glucose administration can be high and these calories need to be considered in the calculation of energy balance, understanding that this is likely to negatively impact protein and micronutrient provision.

Proteins

Most guidelines recommend using a high protein formula to achieve protein doses of 1.2-1.5 g/kg/day based on expert consensus and small observational studies in critically ill patients without COVID-19 (Figure 3) (Fadeur et al. 2020).

Micronutrients

Although not discussed in the available guidelines, there is a major enthusiasm for the use of vitamins and trace elements in patients with COVID-19 following the association of low vitamin C, D and zinc levels and poor outcomes. Interventional trials assessed the effects of high doses of these micronutrients. Overall, vitamin C and zinc supplementation did not improve the outcome, while oral vitamin D supplementation decreased the need for ICU admission, induced a faster negativity of SARS-CoV-2 tests and even mortality in one study (Speakman et al. 2021). This requires further investigation. At a minimum, micronutrients to the recommended dietary intakes should be provided and supplementation considered in patients who stay for extended periods or who have considerable nutrition inadequacy.

Timing of Initiation

Most guidelines recommend an early initiation of enteral nutrition within 48 h of admission, at least at a minimal trophic rate including in patients receiving low or decreasing doses of vaspressors.

Route of Feeding

Most guidelines recommend the enteral route (oral or enteral nutrition (EN)) in preference of parenteral nutrition (PN) for nutrition therapy, via the nasogastric (NG) route.

The delivery of EN can be impaired by gastrointestinal (GI) dysfunction during the ICU stay (Hoyois et al. 2021). The limited tolerance to EN can be related to a dysfunction of GI tract, reflected by the high prevalence of GI symptoms upon admission or during the ICU stay in COVID-19 patients (Kariyawasam et al. 2021; Blaser et al. 2021a; Drake et al. 2021) and frequent
GI complications reported. Moreover, the significant need for NMB agents and prone positioning to aid ventilation can also impair GI intolerance. Notably, the presence of GI symptoms has been associated with higher illness severity, reflected in a higher need for hospital admission, ICU admission and intubation, even after adjustment for demographics, comorbidities, and other clinical symptoms (Bishehsari et al. 2021). Cytotoxic enterocyte injury and microvascular injury and thromboinflammation have been incriminated (Blaser et al. 2021a). Hence, EN should be withheld and gradually recommenced upon patient stabilisation in the case of uncontrolled shock and haemodynamic instability.

**Mode of Feeding**

Six guidelines recommend continuous EN, as this mode is easier to manage and could be associated with a lower risk of diarrhoea and less frequent patient interaction for staff with continuous EN, decreasing exposure of healthcare professionals to COVID-19.

**Monitoring**

**Gastric residual volumes**

Seven guidelines make recommendations around the use of gastric residual volumes (GRVs) to monitor EN tolerance using cut-off values of 300-500 ml. However, as acknowledged in most guidelines, the routine monitoring of GRVs may be unreliable to detect delayed gastric emptying, can impact nutrition delivery if EN is stopped or reduced unnecessarily, and may be a risk of viral transmission to the healthcare provider. In the absence of GRV measurement, other clinical features of EN intolerance including abdominal distension and regurgitation should be closely monitored (Blaser et al. 2021b).

**Electrolytes**

Four guidelines mention that re-feeding syndrome risk should be considered in critically ill patients admitted with COVID-19, as poor appetite and intake and GI symptoms are common prior to and during hospital admission. These guidelines recommend close monitoring and replacement of potassium, phosphate, and magnesium when commencing nutrition support (Boot et al. 2018).

**Nutrition adequacy**

To prevent under- or over-feeding, the majority of guidelines recommend close monitoring of nutrition adequacy (energy and protein delivery compared to estimated or measured requirements). This is particularly true in the setting of a pandemic where normal models of care are disrupted and the risk for nutrition failure is significant.

**Specific Patient Populations and Conditions**

**Prone positioning**

Early and continuous EN is recommended,
while patients are in the prone position. Patients in the prone position may have increased GI intolerance, and prokinetics and insertion of post-pyloric tubes should be considered as necessary. PN may be needed in cases of significant EN intolerance and nutrition deficit.

**Extracorporeal membrane oxygenation**

Three guidelines make specific recommendations for patients receiving extracorporeal membrane oxygenation (ECMO) including early EN in this patient group. Patients on ECMO are likely to have high metabolic needs (e.g. after ICU day 5 up to 30 kcal/kg and 1.5–2 g protein/kg day in normal-weight individuals).

**Non-intubated critically ill patients**

Seven guidelines make recommendations for non-intubated patients. The overarching theme is that these patients are at high nutrition risk and that a high energy and high protein diet and oral nutrition supplements should be provided. Escalation to EN should occur if energy and protein intakes are inadequate (e.g. meeting <50–65% targets after 5 days). Some guidelines specifically recommend avoiding early removal of NG tubes post extubation.

**Equipment Considerations**

Two guidelines recommend assessment of equipment needs early and development of plans in the event of equipment (e.g. feeding pumps and delivery lines) and nutrition formula shortages.

**Workforce Recommendations**

Two guidelines make specific recommendations regarding dietetic workforce capacity during the COVID-19 pandemic. This includes rapidly identifying additional staff who could be upskilled in the case of significant admission numbers or staff sickness (such as the use of appropriately trained allied health assistant staff, or training of dietetic staff who have transferable skills in specific ICU nutrition processes).

It is also recommended that training be commenced early with an appropriate education package that has been developed by an experienced critical care dietitian, and that the most experienced critical care dietitians see the sickest patients. Five guidelines mention the use of remote working processes to protect staff from infection risk of COVID-19.

In summary, most available recommendations do not differ from guidelines for the management of general ICU patients although the risk of contamination supports the avoidance of unnecessary invasive manipulation. The level of evidence supporting these guidelines is very low in the absence of large-scale prospective studies and the appropriateness of the recommendations needs to be considered in the context it is being applied.

**Conflict of Interest**

None.

---

**References**


Indirect Calorimetry in Mechanically Ventilated Patients to Assess Nutritional Targets

An overview of the physiological aspects of indirect calorimetry, its limitations in use, the available literature and future prospects for tailored nutrition.

Introduction
Medical nutrition therapy (MNT) is an essential part of patient care in the intensive care unit (ICU) setting. Similar to mechanical ventilation and haemodynamic management, nutritional intake should be individualised for each patient. Achieving energy and protein targets should be a daily concern for the ICU physician. Indeed, it is currently established that the accumulation of an energy debt is associated with an increase in morbidity and mortality in the ICU (Villet et al. 2005). In addition, insufficient protein intake may contribute to the development of ICU-acquired muscle weakness (De Janghe et al. 2009). These disabling functional sequelae may persist over the long term (Herridge et al. 2011). On the other hand, the provision of excessive artificial nutrition or ‘overfeeding’ may lead to infectious or metabolic complications (Elke et al. 2014; Weinsier et al. 1981).

It therefore seems pragmatic to tailor the daily intake of patients to their precise nutritional needs. These can vary significantly over the course of a stay, according to the patient’s age, pre-existing comorbidities and the severity of their condition. Historically, the assessment of the energy expenditure in the ICU was based on equations that included clinical and anthropometric data. Most of these were developed for healthy subjects to which a stress factor was applied. These assessments turned out to be highly inaccurate when compared to actual measurements in a study published in 2003. In this work, Harris and Benedict equation developed in 1918 was providing only 60% of actual energy requirements in critically ill patients (MacDonald and Hildebrandt 2003; Harris and Benedict 1918). Another strategy recommended by international guidelines was the use of fixed energy targets around 25 kcal/kg/day for ICU patients (Lefrant et al. 2014; McClave et al. 2015). However, this simplistic solution, which is supposed to suit everyone, does not take into account the individuality of patients and their specific characteristics. Given these inaccuracies, the ESPEN recommendations, published in 2018, have reshuffled the deck (Singer et al. 2019). The recommended technique for assessing nutritional requirements has evolved into the measurement of energy expenditure based on indirect calorimetry. This recommendation was made possible by technological advances allowing the development of more reliable and ergonomic tools available to the ICU physician (Oshima et al. 2020; Rehal et al. 2016). In this review we will discuss the physiological aspects of the technique, its limitations in use, the available literature and the future prospects for tailored nutrition.

Physiological Principles
The energy target is determined by the energy expenditure which can be assessed in several ways. Direct calorimetry measures heat production but require an insulated chamber which makes it unsuitable for daily patient care. Indirect calorimetry is the gold standard method for estimating energy metabolism based on gas exchange analysis. Indeed, the oxidation of substrates results in the production of energy, in the form of adenosine triphosphate, nitrogen and water. Estimating resting energy expenditure (REE) through indirect calorimetry relies on the measurements of oxygen consumption ($V_{O_2}$) and carbon dioxide production ($V_{CO_2}$). The use of the Weir formula can therefore be applied with the help of urinary nitrogen that reflects protein oxidation.

$$EE (kcal/day) = 1.44 \times [3.94 \times V_{O_2}(ml/min) + 1.11 \times V_{CO_2}(ml/min)] - \text{urinary nitrogen (g/day)} \times 2.17$$

According to the Haldane transformation principle, nitrogen is inert and its concentration is the same in the gas inspired and exhaled by the patient. This observation eliminates the need for urine sampling which can be unreliable in ICU patients. This customisation raises the error level to less than one percent (Wilmore and Costill 1973; Weir 1949).

$$EE (kcal/day) = 1.44 \times [3.94 \times V_{O_2}(ml/min) + 1.11 \times V_{CO_2}(ml/min)]$$
Indirect calorimetry also allows the measurement of the respiratory quotient (RQ) which estimates the type of substrate consumed such as carbohydrates, proteins and lipids. This ratio is measured between 0.67 and 1.3 in humans. The ratio is close to 1 for carbohydrate metabolism, 0.8 for protein and 0.7 for lipids.

\[
RQ = \frac{VCO_2}{VO_2}
\]

By assigning the respiratory quotient to an average of 0.86 or estimating it from the nutritional intake (food quotient or nutritional quotient), energy expenditure can be estimated based on the production of carbon dioxide alone. This method, derived from indirect calorimetry, is a fair compromise that is more accurate than predictive equations but less than exhaustive indirect calorimetry (Stapel et al. 2015; Oshima et al. 2017; Kagan et al. 2018).

\[
FQ = \%\text{protein} \times 0.8 + \%\text{carbohydrates} \times 1 + \%\text{lipids} \times 0.7
\]

\[
EE (FQ) (\text{kcal/day}) = 1.44 \times [3.94 \times VCO_2(\text{ml/min})/FQ + 1.11 \times VCO_2(\text{ml/min})]
\]

\[
EE_{(RQ = 0.86)} (\text{kcal/day}) = VCO_2(\text{ml/min}) \times 8.19
\]

Even if the process is fully automated, the knowledge of these formulas allows a better understanding of the functioning of the indirect calorimetry machines but also of their limitations.

**Indication, Repetition and Limitation**

The 15th recommendation of 2019 ESPEN guidelines, which was accepted with strong consensus, states that in critically ill mechanically ventilated patients, energy expenditure should be determined by using indirect calorimetry. This decision has greatly expanded the scope of calorimeters in the ICU and has led to an evolution in our nutritional practices towards tailored prescriptions and goal-oriented therapy (Singer et al. 2019).

Nevertheless, this technique has several limitations linked with all situations that can disturb the measurement of gas exchange. The first prerequisite for reliable measurements is the stability of the patient’s clinical condition. This implies the absence of sudden haemodynamic or respiratory parameters variations. The second limit relies on respiratory parameters that may interfere with the gas analyzer including an inspired oxygen fraction (FiO\(_2\)) higher than 70%, a respiratory rate higher than 35/min or a positive end expiratory pressure higher than 10 cmH\(_2\)O. Furthermore, the presence of any type of air leaks in the ventilator circuit or within the patient respiratory tree (bronchopleural fistula or chest drainage) may result in an underestimation of the energy expenditure.

Finally, any variation of CO\(_2\) stock may impair IC functioning. Continuous renal replacement therapy (CRRT) is a known factor that may cause CO\(_2\) extraction or metabolic shift via fluid dynamics or citrate use. A recent clinical trial published by Jonckheer et al. (2020) have questioned this relative contraindication. They measured CO\(_2\) content in the CRRT effluent liquid to estimate and correct the ‘true VCO\(_2\)’ used in the Weir equation. Surprisingly, the use of CCRT accounted for less than 2-3% of REE measurement error. The use of a correcting factor was then considered irrelevant (Jonckheer et al. 2020). In the same field, in critically ill patient benefiting from an extracorporeal membrane oxygenation (ECMO) therapy, Wollersheim’s team suggested in a recent paper the use of the MEEP protocol to correct energy expenditure measurements based on pre- and post-membrane blood gas (Wollersheim et al. 2018).

Despite these few precautions and adjustments, use of IC remains possible in the majority of ICU patients. However, it is important to note that the measurement of energy expenditure is a reflection of energy metabolism at a given time. This value can vary significantly from one hour or one day to the next. Therefore, longitudinal assessment is advised during the ICU stay and when significant changes in clinical status occurs (Vermeij et al. 1989). For example, the incidence of sepsis was associated with a 30% increase in metabolic rate in a landmark study published in 1993 (Kreymann et al. 1993). The degree of hypermetabolism in the acute phase of severe sepsis was even associated with 28-day mortality in the ICU setting (Wu et al. 2015).

This observation seems plausible given that energy expenditure is a direct reflection of the systemic inflammatory exacerbation associated with the secretion of proinflammatory cytokines and neurohormonal response. Moreover, in a study published in 2020, Li et al. demonstrated the feasibility of using indirect calorimetry to assess the metabolic capacity of nutrient assimilation in septic critically ill patients. The ability of the organism to metabolise carbohydrates after the introduction of enteral nutrition was associated with better survival in the ICU (Li and Mukhopadhyay 2020).

In addition to sepsis, other known factors have been identified for their impact on the measures (Mtaweh et al. 2019). Apart from clinical constants such as temperature, minute ventilation and heart rate, therapies inherent to organ failure management may affect calorimetric measurements. The administration of neuromuscular blocking agents is a known influencing factor. A recent cohort study observed a significant decrease in energy expenditure in mechanically ventilated patients treated with continuous infusion of cisatracurium (Koekkoek et al. 2020). The same findings were observed with the use of deep sedation such as midazolam or analgesia with opiates in ICU patients (Swinamer et
al. 1988; Terao et al. 2003). Furthermore, obese patients have very heterogeneous energy requirements, even with identical body mass index. The use of adjusted body weight, recommended by various experts groups, can regularly be associated with an overestimation of actual needs (Ridley et al. 2020). This justifies conducting repeated measurements of energy expenditure and paying particular attention to the prevention of skeletal muscle loss.

The value of longitudinal measurement has been highlighted recently by the LEEP-COVID project coordinated by Paul Wischmeyer’s team, whose preliminary results have been published. In 22 patients with severe COVID, repeated measurements of energy expenditure showed high, rising and persistent hypermetabolism for up to three weeks after intubation (Whittle et al. 2020). This prolonged metabolic exacerbation could explain the muscle damage and the severity of functional sequelae in COVID survivors (Van Aerde et al. 2020). The underestimation of actual energy expenditure was already known in other pathologies associated with marked systemic inflammation such as acute pancreatitis or peritonitis (Valainathan et al. 2019; Plank et al. 1998). These measured values, sometimes far above the expert recommendations for caloric provision, raise concerns and may justify broader use of indirect calorimetry. Furthermore, this great variability in daily values goes against the pattern historically described by Cuthbertson in 1942 of an initial ‘ebb phase’ followed by a ‘flow phase’ supposed to describe the majority of intensive care stays (Cuthbertson et al. 1942). The day-to-day use of calorimetry not only allows us to adapt nutritional intake to the real needs of critically ill patients, but also to understand more accurately their metabolic patterns resulting from the progression of their condition.

**From Energy Expenditure to Caloric Target**

ESPEN guidelines state that if indirect calorimetry is used, isocaloric nutrition rather than hypocaloric nutrition can be progressively implemented after the early phase of acute illness. During the early phase, it is suggested to administer hypocaloric nutrition not exceeding 70% of EE and slowly increase up to 80-100% after day 3 (Singer et al. 2019).

This recommendation is based on a recent study by Zusman et al. (2016) analysing data from 1171 patients who benefitted from energy expenditure measurements by indirect calorimetry. A ratio of administered calories to energy expenditure between 60% and 80% was associated with the lowest mortality, length of stay and duration of mechanical ventilation. This result is consistent with the findings of Arabi et al. (2015) who demonstrated the non-inferiority of a permissive, normo-protein hypocaloric strategy in the first week of the ICU stay.

The gradual increase in energy target during the acute phase makes sense since the initial caloric intake adds to the endogenous production of energy from proteolysis, lipogenesis and gluconeogenesis. Excessive initial intake would be considered as overfeeding, which is known to be associated with metabolic and infectious complications.

**Benefit on ICU Outcomes**

The main focus in the last few years has been to determine whether monitoring energy expenditure and providing individualised nutritional prescriptions can improve the outcome of intensive care patients.

In 2011, Singer et al. published one of the landmark studies investing indirect calorimetry. This randomised controlled trial included 130 mechanically ventilated patients with a length of stay greater than 3 days. Daily caloric intake was prescribed according to energy expenditure assessed by indirect calorimetry or based on a fixed dose of 25 kcal/kg/day. Regarding in-hospital mortality, the primary endpoint, a trend in favour of indirect calorimetry guided strategy was observed (p=0.058). Nevertheless, there was a significant reduction of the length of stay and duration of mechanical ventilation (Singer et al. 2011). The TICACOS international follow-up study was published in 2021 and included 7 sites and 417 patients. The use of energy expenditure measurement compared to a fixed target significantly increased caloric and protein intakes without significantly influencing morbidity and mortality in participants (Singer et al. 2021).

The EAT-ICU study published in 2017 aimed to demonstrate the superiority of ‘early goal’ approach management with an early achievement of caloric targets estimated by indirect calorimetry. Unfortunately, this strategy was not associated with any benefit on the mental or physical outcome of the participants (Alingstrup et al. 2017).

A recent meta-analysis published in 2021 by Duan et al. included eight randomised controlled trials evaluating the clinical impact of energy prescription based on expenditure measurement by indirect calorimetry. A significant beneficial effect on short-term mortality was found in the 991 critically ill patients included. However, no significant effect was observed regarding duration of mechanical ventilation and length of stay (Duan et al. 2021).

Several reasons may be suggested to explain the lack of clear evidence of the benefit of indirect calorimetry guided nutrition in the literature. On one hand, an individualised assessment of nutritional needs is maybe not necessary for all critically ill patients including short stays and...
illnesses associated with low nutritional risk. Heyland et al. (2011) developed the NUTRIC score in order to distinguish the patients who would benefit most from optimising their nutritional intake. One line of research could be to assess the impact of individualised nutrition based on indirect calorimetry in at-risk patients with a NUTRIC score strictly higher than 4.

On the other hand, individualised energy target alone may not be sufficient to influence patient outcome. The answer may lie in the importance of the proportion of calories related to protein intake. Several methods are available to the ICU physician for estimating anabolic/catabolic balance and skeletal muscle loss. The most frequently cited technique in the literature is the measurement of the nitrogen balance calculated from the difference between excreted (urinary and non-measurable) and ingested nitrogen; the result is obtained from the analysis of 24-hour urine (Danielis et al. 2019). Nevertheless, its measurement may be affected by the occurrence of renal failure or major fluid movements. Bio-impedance and radiological measurements by ultrasound or tomography are paths of research to explore in the longitudinal follow-up of our critically ill and post-ICU patients (Thibault et al. 2016; Pardo et al. 2018; Dusseaux et al. 2019). None of these techniques have yet shown clear benefit in guiding the prescription of tailored protein intakes. Until a reliable, repeatable, non-invasive technique is available, ESPEN advises progressive prescription of protein intake with a target of 1.3 g/kg/day (Singer et al. 2019). This progressive approach seems crucial in view of a study published in 2019 which demonstrated better survival in patients receiving less than 0.8g/kg/day before D3 and more than 0.8g/kg/day after 3 days (Koekkoek et al. 2019).

Finally, the choice of endpoints considered to be sufficiently hard, such as mortality and length of stay, may not be the most appropriate for the evaluation of nutritional practices. In this field, the selection of a functional primary endpoint was very rare in a recent pragmatic study (Taverny et al. 2019). However, this observation seems to be challenged in recent studies such as EAT-ICU where the primary endpoint was the physical component of the SF-36 quality of life score (Allingstrup et al. 2017). Similarly, in an ongoing trial evaluating the combination of physical exercise and high protein intake, the primary endpoint is physical functioning at hospital discharge (Heyland et al. 2019).

**Conclusion**

The spread of the measurement of energy expenditure via indirect calorimetry constitutes a major advance in the era of individualised evidence-based medicine for each patient. The development of longitudinal monitoring of metabolic activity and the evaluation of substrate consumption via the analysis of the respiratory quotient are promising aspects that should be the subject of future clinical trials. Large-scale trials evaluating the impact of indirect calorimetry on functional endpoints would certainly contribute to the debate. Moreover, the conduct of medico-economic studies justifying the purchase of these expensive machines would constitute a strong signal for the future of critically ill patient nutrition care (Arabi et al. 2017). In the meantime, given its ease of use when available, bedside use of indirect calorimetry should be encouraged to move towards personalised medicine in the intensive care unit.

**Conflict of Interest**

None.

**References**


For full references, please email editorial@icu-management.org or visit https://iii.hm/1cxg
Author index

Aarab Y 20 [https://iii.hm/17n], 162 https://iii.hm/1aqk
Allen J 52 https://iii.hm/17m
Artigas A 70 [https://iii.hm/1b9], 174, https://iii.hm/1b854, 176 [https://iii.hm/1b8k]
Banner-Goodspeed V 93 https://iii.hm/18w
Bautista-Aguilar GA 229 [https://iii.hm/1c8], 249 [https://iii.hm/1c8k]
Begos D 76 https://iii.hm/1b8y, 264 https://iii.hm/1b9g
Bellani G 142 https://iii.hm/1aq4
Benen B 240 https://iii.hm/1c93
Blomkink K 242 https://iii.hm/1d8k
Bickenbach J 38 https://iii.hm/1c79
Bolaños-Tescano VA 236 https://iii.hm/1c8d
Bouhassira A-S 184 https://iii.hm/1b8k
Bruno RR 176 https://iii.hm/1b8k
Castillo-Gutiérrez O 229 [https://iii.hm/1c8b]
Cerf C 24, https://iii.hm/17j
Chan Y 195 https://iii.hm/1b4k
Chapple L-A 292 https://iii.hm/1b95
Clain JM 32 https://iii.hm/1c77
Constantin J-M 297 https://iii.hm/1d97
Coopersmith CM 214 https://iii.hm/1c83
Corradi F 134 https://iii.hm/1a9g6, 208 https://iii.hm/1c80
Cywinski J 46 https://iii.hm/17j
Darbishire J 91 https://iii.hm/1b8u
de Almeida LF 260 https://iii.hm/1c93
De Jong A 20 https://iii.hm/1c77, 138 https://iii.hm/1a9g9, 162 https://iii.hm/1aqk
Deluy-Tomas E 42 https://iii.hm/1b7, 148 https://iii.hm/1a9g, 229 https://iii.hm/1c8b, 269 https://iii.hm/1d87
De Waele E 29 https://iii.hm/1c7r
Einav S 186 https://iii.hm/1b9k
Esteban I 221 https://iii.hm/1c87
Fernández-Urrutia LA 236 https://iii.hm/1d8k
Ferrari S 134 https://iii.hm/1a9g6, 208 https://iii.hm/1c80
Helm H 174, https://iii.hm/1b8k
Forfar F 134 https://iii.hm/1a9g6, 208 https://iii.hm/1c80
Freitas FGR 113 https://iii.hm/1b8u
Furtin B 83 https://iii.hm/1b8t
Gallardo-Astorga PC 84 https://iii.hm/1b8s
Gladwin B 248 https://iii.hm/1c7k
Gómez González C 84 https://iii.hm/1b8s, 148 https://iii.hm/1a9g4
Grenzebach J 122 https://iii.hm/1a9g2
Guerrero-Gutierrez MAG 42 https://iii.hm/1b8k
Guitart C 221 https://iii.hm/1c87
Hawryluck L 79 https://iii.hm/1b8g
Hayes MM 93 https://iii.hm/1b8w, 198 https://iii.hm/1b8k
Herasievich V 32 https://iii.hm/1b97
Ibarz M 70 https://iii.hm/1b8c
Isidori A 134 https://iii.hm/1a9c6, 208 https://iii.hm/1c80
Jaber S 20 https://iii.hm/1b9c, 138 https://iii.hm/1a9g8, 162 https://iii.hm/1aqk
Jentzer JC 126 https://iii.hm/1a9g1
Jones-Baro RA 84 https://iii.hm/1b8s
Jordan I 221 https://iii.hm/1c87
Juffermans NP 14 https://iii.hm/1b9g
Jung B 9 https://iii.hm/1c7g
Jung C 174 https://iii.hm/1b9k
Kamar-Maia Garcia C 236 https://iii.hm/1c8d
Karamchandani K 152 https://iii.hm/1aqg
Khanna AK 44 https://iii.hm/1b9j, 152 https://iii.hm/1a9g
Klingensmith NJ 214 https://iii.hm/1c83
Lakkar I 190 https://iii.hm/1bkb
Leffey J 142 https://iii.hm/1a9g
Le Neindre A 107 https://iii.hm/1b8w
Leone M 130 https://iii.hm/1a9g6, 190 https://iii.hm/1bkb
Lisbon A 93 https://iii.hm/1b8w
Lopez A 190 https://iii.hm/1bkb
Longthomas Y 226 https://iii.hm/1b99
Machado FR 113 https://iii.hm/1b8r
Maheshwari K 44 https://iii.hm/1b7k
Maggiore SM 4 https://iii.hm/17j
Mancilla-Galindo J 236 https://iii.hm/1c8d
Martin L 38 https://iii.hm/1a9g
Martínez-Vázquez SE 236 https://iii.hm/1c8d
Martínez-Gómez S 38 https://iii.hm/1b97
Meade-Aguilar JA 148 https://iii.hm/1a9g
Mendes PV 249 https://iii.hm/1c93
Mettaxa V 288 https://iii.hm/1d93
Michaelsen A 26 https://iii.hm/1c70
Martinez-Camacho MA 84 https://iii.hm/1b8s, 148 https://iii.hm/1a9g
Mathur P 46 https://iii.hm/1b9k
McRae J 52 https://iii.hm/17n
Michaud F 144 https://iii.hm/1a9c
Minto-Bernal J 249 https://iii.hm/1b9z
Monet C 138 https://iii.hm/1a9g8
Morales-Hernandez D 84 https://iii.hm/1b8s
Morgado-Villasenor LA 269 https://iii.hm/1d87
Munshi L 279 https://iii.hm/1d92
Muñoz SN 142 https://iii.hm/1a9g, 152 https://iii.hm/1a9gq, 187 https://iii.hm/1bk9
Nalcin FE 264 https://iii.hm/1d8x
Ntoubomposoulos G 107 https://iii.hm/1b8s
Olivera-Ramos M 229 https://iii.hm/1c8b
Pacheco ED 113 https://iii.hm/1b9k
Pardo E 297 https://iii.hm/1c97
Pastene B 130 https://iii.hm/1a9g
Peine A 38 https://iii.hm/1b9j
Perez-Neito OR 42 https://iii.hm/1b9b, 84 https://iii.hm/1b9c, 148 https://iii.hm/1a9g, 229 https://iii.hm/1b9d, 269 https://iii.hm/1b9g
Pickering BW 32 https://iii.hm/1b9z
Pirani T 288 https://iii.hm/1d93
Poole J 158 https://iii.hm/1a9g
Porres-Aguilar M 269 https://iii.hm/1d9k
Preiser J-C 292 https://iii.hm/1d95
Ramos FJO 113 https://iii.hm/1b8r
Ranieri VM 6 https://iii.hm/1b9j
Rello J 224 https://iii.hm/1c89
Ridley E 292 https://iii.hm/1d95
Romenskaya T 226 https://iii.hm/1c82
Rossa J 52 https://iii.hm/17n
Rubulotta F 174 https://iii.hm/1b9k3, 182 https://iii.hm/1b9k7, 226 https://iii.hm/1c89
Rusinova K 24 https://iii.hm/1b7k
Russo MV 162 https://iii.hm/1a9g
Saha R 288 https://iii.hm/1d93
Sakkas SG 122 https://iii.hm/1a9g2
Salluh JIF 113 https://iii.hm/1b8r
Samama CM 208 https://iii.hm/1d8v
Sanchez-Diaz JS 42 https://iii.hm/1b7b
Sarge T 73 https://iii.hm/1b8w, 198 https://iii.hm/1b8k
Siddiqui S 93 https://iii.hm/1b8u, 192 https://iii.hm/1b9d, 198 https://iii.hm/1b9b
Singh N 288 https://iii.hm/1d92
Soriano-Orozco D 42 https://iii.hm/1b7b
Spring J 279 https://iii.hm/1b91
Styra R 78 https://iii.hm/1b8g
Sullivan AM 93 https://iii.hm/1b8w
Taddi E 134 https://iii.hm/1a9g
Telias I 212 https://iii.hm/1c7u
Terre VO 262 https://iii.hm/1d9x
Uhlig T 34 https://iii.hm/1b7k
Van Zanten A 29 https://iii.hm/1b7l, 126 https://iii.hm/1a9g8
Vincent JL 1 https://iii.hm/1b7r, 14 https://iii.hm/1b72, 61 https://iii.hm/1b8s, 64 https://iii.hm/1b8k, 117 https://iii.hm/1b9y, 149 https://iii.hm/1b9k1, 203 https://iii.hm/1c7r, 251 https://iii.hm/1d91
Wernly B 174 https://iii.hm/1b8k
Wischmeyer P 29 https://iii.hm/1b7c
Wein PA 24 https://iii.hm/1b7g
Young P 248 https://iii.hm/1c95
Zamarron-Lopez EI 42 https://iii.hm/1b7b, 148 https://iii.hm/1a9g, 229 https://iii.hm/1b9b, 269 https://iii.hm/1b9g
Zanata C 226 https://iii.hm/1c89
## AGENDA

For a full listing of events visit [https://iii.hm/cuevents2021](https://iii.hm/cuevents2021)

### DECEMBER

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>DIIV 2021 - German Interdisciplinary Association for Intensive Care and Emergency Medicine Congress Virtual event <a href="https://iii.hm/1dcs">https://iii.hm/1dcs</a></td>
</tr>
<tr>
<td>5-8</td>
<td>Critical Care Canada Forum 2021 Virtual event <a href="https://iii.hm/1dcd">https://iii.hm/1dcd</a></td>
</tr>
<tr>
<td>6-8</td>
<td>ICS State of the Art 2021 Virtual event <a href="https://iii.hm/1dcu">https://iii.hm/1dcu</a></td>
</tr>
<tr>
<td>17-19</td>
<td>Euroanaesthesia 2021 Virtual event <a href="https://iii.hm/1dcv">https://iii.hm/1dcv</a></td>
</tr>
</tbody>
</table>

### JANUARY

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-7</td>
<td>Blood Diseases in the ICU: Advance Training 2022 Paris, France <a href="https://iii.hm/1dcx">https://iii.hm/1dcx</a></td>
</tr>
<tr>
<td>13-15</td>
<td>Society for Technology in Anesthesia Annual Meeting 2022 Virtual event <a href="https://iii.hm/1dcx">https://iii.hm/1dcx</a></td>
</tr>
<tr>
<td>28-30</td>
<td>ASA® ADVANCE 2022: The Anesthesiology Business Event! Dallas, Texas, USA <a href="https://iii.hm/1dcy">https://iii.hm/1dcy</a></td>
</tr>
</tbody>
</table>

### FEBRUARY

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-9</td>
<td>SCCM - 51st Critical Care Congress San Juan, Puerto Rico <a href="https://iii.hm/1dcz">https://iii.hm/1dcz</a></td>
</tr>
<tr>
<td>17-19</td>
<td>6th International Trauma Congress ITC 2022 Dubai, UAE <a href="https://iii.hm/1dd0">https://iii.hm/1dd0</a></td>
</tr>
</tbody>
</table>

### MARCH

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-25</td>
<td>41st ISICEM Brussels, Belgium <a href="https://iii.hm/1dd1">https://iii.hm/1dd1</a></td>
</tr>
</tbody>
</table>

### APRIL

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-26</td>
<td>32nd ECCMID Lisbon, Portugal <a href="https://iii.hm/1dd2">https://iii.hm/1dd2</a></td>
</tr>
<tr>
<td>27-30</td>
<td>12th Congress of the European Pain Federation (EFIC 2022) Dublin, Ireland <a href="https://iii.hm/1dd3">https://iii.hm/1dd3</a></td>
</tr>
<tr>
<td>28-29</td>
<td>18th Annual Critical Care Symposium Manchester, UK <a href="https://iii.hm/1dd4">https://iii.hm/1dd4</a></td>
</tr>
</tbody>
</table>